Image (mathematics)

In mathematics, the image of a function is the set of all output values it may produce.

More generally, evaluating a given function {\displaystyle f}f at each element of a given subset {\displaystyle A}A of its domain produces a set, called the “image of {\displaystyle A}A under (or through) {\displaystyle f}f”. Similarly, the inverse image (or preimage) of a given subset {\displaystyle B}B of the codomain of {\displaystyle f,}f, is the set of all elements of the domain that map to the members of {\displaystyle B.}B.

Image and inverse image may also be defined for general binary relations, not just functions.

在这里插入图片描述

f is a function from domain {\displaystyle X}X to codomain {\displaystyle Y.}Y. The yellow oval inside {\displaystyle Y}Y is the image of {\displaystyle f.}f.

1 Definition

The word “image” is used in three related ways. In these definitions, {\displaystyle f:X\to Y}f:X\to Y is a function from the set {\displaystyle X}X to the set {\displaystyle Y.}Y.

1.1 Image of an element

If {\displaystyle x}x is a member of {\displaystyle X,}X, then the image of {\displaystyle x}x under {\displaystyle f,}f, denoted {\displaystyle f(x),}f(x), is the value of {\displaystyle f}f when applied to {\displaystyle x.}x. {\displaystyle f(x)}f(x) is alternatively known as the output of {\displaystyle f}f for argument {\displaystyle x.}x.

Given {\displaystyle y,}y, the function {\displaystyle f}f is said to “take the value {\displaystyle y}y” or “take {\displaystyle y}y as a value” if there exists some {\displaystyle x}x in the function’s domain such that {\displaystyle f(x)=y.}{\displaystyle f(x)=y.} Similarly, given a set {\displaystyle S,}S, {\displaystyle f}f is said to “take a value in {\displaystyle S}S” if there exists some {\displaystyle x}x in the function’s domain such that {\displaystyle f(x)\in S.}{\displaystyle f(x)\in S.} However, “{\displaystyle f}f takes [all] values in {\displaystyle S}S” and “{\displaystyle f}f is valued in {\displaystyle S}S” means that {\displaystyle f(x)\in S}{\displaystyle f(x)\in S} for every point {\displaystyle x}x in {\displaystyle f}f’s domain.

1.2 Image of a subset

Throughout, let {\displaystyle f:X\to Y}f:X\to Y be a function. The image under {\displaystyle f}f of a subset {\displaystyle A}A of {\displaystyle X}X is the set of all {\displaystyle f(a)}f(a) for {\displaystyle a\in A.}{\displaystyle a\in A.} It is denoted by {\displaystyle f[A],}{\displaystyle f[A],} or by {\displaystyle f(A),}{\displaystyle f(A),} when there is no risk of confusion. Using set-builder notation, this definition can be written as[1][2]

{\displaystyle f[A]={f(a):a\in A}.}{\displaystyle f[A]={f(a):a\in A}.}
This induces a function {\displaystyle f[,\cdot ,]:{\mathcal {P}}(X)\to {\mathcal {P}}(Y),}{\displaystyle f[,\cdot ,]:{\mathcal {P}}(X)\to {\mathcal {P}}(Y),} where {\displaystyle {\mathcal {P}}(S)}{\displaystyle {\mathcal {P}}(S)} denotes the power set of a set {\displaystyle S;}{\displaystyle S;} that is the set of all subsets of {\displaystyle S.}S. See § Notation below for more.

1.3 Image of a function

The image of a function is the image of its entire domain, also known as the range of the function.[3] This last usage should be avoided because the word “range” is also commonly used to mean the codomain of {\displaystyle f.}f.

1.4 Generalization to binary relations

If {\displaystyle R}R is an arbitrary binary relation on {\displaystyle X\times Y,}{\displaystyle X\times Y,} then the set {\displaystyle {y\in Y:xRy{\text{ for some }}x\in X}}{\displaystyle {y\in Y:xRy{\text{ for some }}x\in X}} is called the image, or the range, of {\displaystyle R.}R. Dually, the set {\displaystyle {x\in X:xRy{\text{ for some }}y\in Y}}{\displaystyle {x\in X:xRy{\text{ for some }}y\in Y}} is called the domain of {\displaystyle R.}R.

2 Inverse image

“Preimage” redirects here. For the cryptographic attack on hash functions, see preimage attack.
Let {\displaystyle f}f be a function from {\displaystyle X}X to {\displaystyle Y.}Y. The preimage or inverse image of a set {\displaystyle B\subseteq Y}{\displaystyle B\subseteq Y} under {\displaystyle f,}f, denoted by {\displaystyle f^{-1}[B],}{\displaystyle f^{-1}[B],} is the subset of {\displaystyle X}X defined by

{\displaystyle f^{-1}[B]={x\in X,:,f(x)\in B}.}{\displaystyle f^{-1}[B]={x\in X,:,f(x)\in B}.}
Other notations include {\displaystyle f{-1}(B)}f{{-1}}(B) and {\displaystyle f^{-}(B).}{\displaystyle f^{-}(B).}[4] The inverse image of a singleton set, denoted by {\displaystyle f^{-1}[{y}]}{\displaystyle f^{-1}[{y}]} or by {\displaystyle f^{-1}[y],}{\displaystyle f^{-1}[y],} is also called the fiber or fiber over {\displaystyle y}y or the level set of {\displaystyle y.}y. The set of all the fibers over the elements of {\displaystyle Y}Y is a family of sets indexed by {\displaystyle Y.}Y.

For example, for the function {\displaystyle f(x)=x^{2},}{\displaystyle f(x)=x^{2},} the inverse image of {\displaystyle {4}}{\displaystyle {4}} would be {\displaystyle {-2,2}.}{\displaystyle {-2,2}.} Again, if there is no risk of confusion, {\displaystyle f^{-1}[B]}{\displaystyle f^{-1}[B]} can be denoted by {\displaystyle f^{-1}(B),}{\displaystyle f^{-1}(B),} and {\displaystyle f{-1}}f{-1} can also be thought of as a function from the power set of {\displaystyle Y}Y to the power set of {\displaystyle X.}X. The notation {\displaystyle f{-1}}f{-1} should not be confused with that for inverse function, although it coincides with the usual one for bijections in that the inverse image of {\displaystyle B}B under {\displaystyle f}f is the image of {\displaystyle B}B under {\displaystyle f^{-1}.}{\displaystyle f^{-1}.}

3 Notation for image and inverse image

The traditional notations used in the previous section do not distinguish the original function {\displaystyle f:X\to Y}f:X\to Y from the image-of-sets function {\displaystyle f:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)}{\displaystyle f:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)}; likewise they do not distinguish the inverse function (assuming one exists) from the inverse image function (which again relates the powersets). Given the right context, this keeps the notation light and usually does not cause confusion. But if needed, an alternative[5] is to give explicit names for the image and preimage as functions between power sets:

3.1 Arrow notation

{\displaystyle f^{\rightarrow }:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)}{\displaystyle f^{\rightarrow }:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)} with {\displaystyle f^{\rightarrow }(A)={f(a);|;a\in A}}f^{\rightarrow }(A)={f(a);|;a\in A}
{\displaystyle f^{\leftarrow }:{\mathcal {P}}(Y)\to {\mathcal {P}}(X)}{\displaystyle f^{\leftarrow }:{\mathcal {P}}(Y)\to {\mathcal {P}}(X)} with {\displaystyle f^{\leftarrow }(B)={a\in X;|;f(a)\in B}}f^{\leftarrow }(B)={a\in X;|;f(a)\in B}

3.2 Star notation

{\displaystyle f_{\star }:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)}{\displaystyle f_{\star }:{\mathcal {P}}(X)\to {\mathcal {P}}(Y)} instead of {\displaystyle f^{\rightarrow }}f^{\rightarrow }
{\displaystyle f^{\star }:{\mathcal {P}}(Y)\to {\mathcal {P}}(X)}{\displaystyle f^{\star }:{\mathcal {P}}(Y)\to {\mathcal {P}}(X)} instead of {\displaystyle f^{\leftarrow }}f^{\leftarrow }

3.3 Other terminology

An alternative notation for {\displaystyle f[A]}{\displaystyle f[A]} used in mathematical logic and set theory is {\displaystyle f,'‘A.}{\displaystyle f,’'A.}[6][7]
Some texts refer to the image of {\displaystyle f}f as the range of {\displaystyle f,}f,[8] but this usage should be avoided because the word “range” is also commonly used to mean the codomain of {\displaystyle f.}f.

4 Examples

{\displaystyle f:{1,2,3}\to {a,b,c,d}}{\displaystyle f:{1,2,3}\to {a,b,c,d}} defined by {\displaystyle \left{{\begin{matrix}1\mapsto a,\2\mapsto a,\3\mapsto c.\end{matrix}}\right.}{\displaystyle \left{{\begin{matrix}1\mapsto a,\2\mapsto a,\3\mapsto c.\end{matrix}}\right.}
The image of the set {\displaystyle {2,3}}{\displaystyle {2,3}} under {\displaystyle f}f is {\displaystyle f({2,3})={a,c}.}{\displaystyle f({2,3})={a,c}.} The image of the function {\displaystyle f}f is {\displaystyle {a,c}.}{\displaystyle {a,c}.} The preimage of {\displaystyle a}a is {\displaystyle f^{-1}({a})={1,2}.}{\displaystyle f^{-1}({a})={1,2}.} The preimage of {\displaystyle {a,b}}{\displaystyle {a,b}} is also {\displaystyle f^{-1}({a,b})={1,2}.}{\displaystyle f^{-1}({a,b})={1,2}.} The preimage of {\displaystyle {b,d}}{\displaystyle {b,d}} under {\displaystyle f}f is the empty set {\displaystyle {\ }=\emptyset .}{\displaystyle {\ }=\emptyset .}
{\displaystyle f:\mathbb {R} \to \mathbb {R} }{\displaystyle f:\mathbb {R} \to \mathbb {R} } defined by {\displaystyle f(x)=x^{2}.}{\displaystyle f(x)=x^{2}.}
The image of {\displaystyle {-2,3}}{\displaystyle {-2,3}} under {\displaystyle f}f is {\displaystyle f({-2,3})={4,9},}{\displaystyle f({-2,3})={4,9},} and the image of {\displaystyle f}f is {\displaystyle \mathbb {R} ^{+}}\mathbb{R} ^{+} (the set of all positive real numbers and zero). The preimage of {\displaystyle {4,9}}{\displaystyle {4,9}} under {\displaystyle f}f is {\displaystyle f^{-1}({4,9})={-3,-2,2,3}.}{\displaystyle f^{-1}({4,9})={-3,-2,2,3}.} The preimage of set {\displaystyle N={n\in \mathbb {R} :n<0}}{\displaystyle N={n\in \mathbb {R} :n<0}} under {\displaystyle f}f is the empty set, because the negative numbers do not have square roots in the set of reals.
{\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} }{\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} } defined by {\displaystyle f(x,y)=x{2}+y{2}.}{\displaystyle f(x,y)=x{2}+y{2}.}
The fibers {\displaystyle f^{-1}({a})}{\displaystyle f^{-1}({a})} are concentric circles about the origin, the origin itself, and the empty set (respectively), depending on whether {\displaystyle a>0,\ a=0,{\text{ or }}\ a<0}{\displaystyle a>0,\ a=0,{\text{ or }}\ a<0} (respectively). (If {\displaystyle a\geq 0,}{\displaystyle a\geq 0,} then the fiber {\displaystyle f^{-1}({a})}{\displaystyle f^{-1}({a})} is the set of all {\displaystyle (x,y)\in \mathbb {R} ^{2}}{\displaystyle (x,y)\in \mathbb {R} ^{2}} satisfying the equation {\displaystyle x{2}+y{2}=a,}{\displaystyle x{2}+y{2}=a,} that is, the origin-centered circle with radius {\displaystyle {\sqrt {a}}.}{\displaystyle {\sqrt {a}}.})
If {\displaystyle M}M is a manifold and {\displaystyle \pi :TM\to M}{\displaystyle \pi :TM\to M} is the canonical projection from the tangent bundle {\displaystyle TM}TM to {\displaystyle M,}{\displaystyle M,} then the fibers of {\displaystyle \pi }\pi are the tangent spaces {\displaystyle T_{x}(M){\text{ for }}x\in M.}{\displaystyle T_{x}(M){\text{ for }}x\in M.} This is also an example of a fiber bundle.
A quotient group is a homomorphic image.

5 Properties

5.1 General

5.2 Multiple functions

5.3 Multiple subsets of domain or codomain

6 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值