Symmetric function

In mathematics, a function of {\displaystyle n}n variables is symmetric if its value is the same no matter the order of its arguments. For example, a function {\displaystyle f\left(x_{1},x_{2}\right)}{\displaystyle f\left(x_{1},x_{2}\right)} of two arguments is a symmetric function if and only if {\displaystyle f\left(x_{1},x_{2}\right)=f\left(x_{2},x_{1}\right)}{\displaystyle f\left(x_{1},x_{2}\right)=f\left(x_{2},x_{1}\right)} for all {\displaystyle x_{1}}x_{1} and {\displaystyle x_{2}}x_{2} such that {\displaystyle \left(x_{1},x_{2}\right)}{\displaystyle \left(x_{1},x_{2}\right)} and {\displaystyle \left(x_{2},x_{1}\right)}{\displaystyle \left(x_{2},x_{1}\right)} are in the domain of {\displaystyle f.}f. The most commonly encountered symmetric functions are polynomial functions, which are given by the symmetric polynomials.

A related notion is alternating polynomials, which change sign under an interchange of variables. Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric {\displaystyle k}k-tensors on a vector space {\displaystyle V}V is isomorphic to the space of homogeneous polynomials of degree {\displaystyle k}k on {\displaystyle V.}V. Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

1 Symmetrization

Main article: Symmetrization
Given any function {\displaystyle f}f in {\displaystyle n}n variables with values in an abelian group, a symmetric function can be constructed by summing values of {\displaystyle f}f over all permutations of the arguments. Similarly, an anti-symmetric function can be constructed by summing over even permutations and subtracting the sum over odd permutations. These operations are of course not invertible, and could well result in a function that is identically zero for nontrivial functions {\displaystyle f.}f. The only general case where {\displaystyle f}f can be recovered if both its symmetrization and antisymmetrization are known is when {\displaystyle n=2}n=2 and the abelian group admits a division by 2 (inverse of doubling); then {\displaystyle f}f is equal to half the sum of its symmetrization and its antisymmetrization.

2 Examples

Consider the real function
{\displaystyle f(x_{1},x_{2},x_{3})=(x-x_{1})(x-x_{2})(x-x_{3}).}{\displaystyle f(x_{1},x_{2},x_{3})=(x-x_{1})(x-x_{2})(x-x_{3}).}
By definition, a symmetric function with {\displaystyle n}n variables has the property that
{\displaystyle f(x_{1},x_{2},\ldots ,x_{n})=f(x_{2},x_{1},\ldots ,x_{n})=f(x_{3},x_{1},\ldots ,x_{n},x_{n-1}),\quad {\text{ etc.}}}{\displaystyle f(x_{1},x_{2},\ldots ,x_{n})=f(x_{2},x_{1},\ldots ,x_{n})=f(x_{3},x_{1},\ldots ,x_{n},x_{n-1}),\quad {\text{ etc.}}}
In general, the function remains the same for every permutation of its variables. This means that, in this case,
{\displaystyle (x-x_{1})(x-x_{2})(x-x_{3})=(x-x_{2})(x-x_{1})(x-x_{3})=(x-x_{3})(x-x_{1})(x-x_{2})}{\displaystyle (x-x_{1})(x-x_{2})(x-x_{3})=(x-x_{2})(x-x_{1})(x-x_{3})=(x-x_{3})(x-x_{1})(x-x_{2})}
and so on, for all permutations of {\displaystyle x_{1},x_{2},x_{3}.}{\displaystyle x_{1},x_{2},x_{3}.}
Consider the function
{\displaystyle f(x,y)=x{2}+y{2}-r^{2}.}{\displaystyle f(x,y)=x{2}+y{2}-r^{2}.}
If {\displaystyle x}x and {\displaystyle y}y are interchanged the function becomes
{\displaystyle f(y,x)=y{2}+x{2}-r^{2},}{\displaystyle f(y,x)=y{2}+x{2}-r^{2},}
which yields exactly the same results as the original {\displaystyle f(x,y).}{\displaystyle f(x,y).}
Consider now the function
{\displaystyle f(x,y)=ax{2}+by{2}-r^{2}.}{\displaystyle f(x,y)=ax{2}+by{2}-r^{2}.}
If {\displaystyle x}x and {\displaystyle y}y are interchanged, the function becomes
{\displaystyle f(y,x)=ay{2}+bx{2}-r^{2}.}{\displaystyle f(y,x)=ay{2}+bx{2}-r^{2}.}
This function is not the same as the original if {\displaystyle a\neq b,}{\displaystyle a\neq b,} which makes it non-symmetric.

3 Applications

3.1 U-statistics

Main article: U-statistic
In statistics, an {\displaystyle n}n-sample statistic (a function in {\displaystyle n}n variables) that is obtained by bootstrapping symmetrization of a {\displaystyle k}k-sample statistic, yielding a symmetric function in {\displaystyle n}n variables, is called a U-statistic. Examples include the sample mean and sample variance.

4 See also

Alternating polynomial
Elementary symmetric polynomial
Even and odd functions – Mathematical functions with specific symmetries
Quasisymmetric function
Ring of symmetric functions
Symmetrization
Vandermonde polynomial

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值