Numerical integration

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals.

The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature;[1] others take quadrature to include higher-dimensional integration.

The basic problem in numerical integration is to compute an approximate solution to a definite integral

{\displaystyle \int _{a}^{b}f(x),dx}{\displaystyle \int _{a}^{b}f(x),dx}
to a given degree of accuracy. If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision.

在这里插入图片描述

Numerical integration is used to calculate a numerical approximation for the value {\displaystyle S}S, the area under the curve defined by {\displaystyle f(x)}f(x).

1 Reasons for numerical integration

There are several reasons for carrying out numerical integration, as opposed to analytical integration by finding the antiderivative:

The integrand f(x) may be known only at certain points, such as obtained by sampling. Some embedded systems and other computer applications may need numerical integration for this reason.
A formula for the integrand may be known, but it may be difficult or impossible to find an antiderivative that is an elementary function. An example of such an integrand is f(x) = exp(−x2), the antiderivative of which (the error function, times a constant) cannot be written in elementary form.
See also: nonelementary integral
It may be possible to find an antiderivative symbolically, but it may be easier to compute a numerical approximation than to compute the antiderivative. That may be the case if the antiderivative is given as an infinite series or product, or if its evaluation requires a special function that is not available.

2 History

3 Methods for one-dimensional integrals

3.1 Quadrature rules based on interpolating functions

3.2 Generalized midpoint rule formula

3.3 Adaptive algorithms

3.4 Extrapolation methods

3.5 Conservative (a priori) error estimation

3.6 Integrals over infinite intervals

4 Multidimensional integrals

4.1 Monte Carlo

4.2 Sparse grids

4.3 Bayesian Quadrature

5 Connection with differential equations

6 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值