Grandi‘s series

In mathematics, the infinite series 1 − 1 + 1 − 1 + ⋯, also written

{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}}{\displaystyle \sum _{n=0}^{\infty }(-1)^{n}}
is sometimes called Grandi’s series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that it lacks a sum in the usual sense. On the other hand, its Cesàro sum is 1/2.

1 Unrigorous methods

One obvious method to attack the series

1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + …
is to treat it like a telescoping series and perform the subtractions in place:

(1 − 1) + (1 − 1) + (1 − 1) + … = 0 + 0 + 0 + … = 0.
On the other hand, a similar bracketing procedure leads to the apparently contradictory result

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + … = 1 + 0 + 0 + 0 + … = 1.
Thus, by applying parentheses to Grandi’s series in different ways, one can obtain either 0 or 1 as a “value”. (Variations of this idea, called the Eilenberg–Mazur swindle, are sometimes used in knot theory and algebra.)

Treating Grandi’s series as a divergent geometric series and using the same algebraic methods that evaluate convergent geometric series to obtain a third value:

S = 1 − 1 + 1 − 1 + …, so
1 − S = 1 − (1 − 1 + 1 − 1 + …) = 1 − 1 + 1 − 1 + … = S
1 − S = S
1 = 2S,
resulting in S =
1
/
2
. The same conclusion results from calculating −S, subtracting the result from S, and solving 2S = 1.[1]

The above manipulations do not consider what the sum of a series actually means and how said algebraic methods can be applied to divergent geometric series. Still, to the extent that it is important to be able to bracket series at will, and that it is more important to be able to perform arithmetic with them, one can arrive at two conclusions:

The series 1 − 1 + 1 − 1 + … has no sum.[1][2]
…but its sum should be
1
/
2
.[2]
In fact, both of these statements can be made precise and formally proven, but only using well-defined mathematical concepts that arose in the 19th century. After the late 17th-century introduction of calculus in Europe, but before the advent of modern rigor, the tension between these answers fueled what has been characterized as an “endless” and “violent” dispute between mathematicians.[3][4]

2 Relation to the geometric series

For any number {\displaystyle r}r in the interval {\displaystyle (-1,1)}(-1,1), the sum to infinity of a geometric series can be evaluated via

{\displaystyle \lim _{N\to \infty }\sum _{n=0}{N}r{n}=\sum _{n=0}^{\infty }r^{n}={\frac {1}{1-r}}.}{\displaystyle \lim _{N\to \infty }\sum _{n=0}{N}r{n}=\sum _{n=0}^{\infty }r^{n}={\frac {1}{1-r}}.}
For any {\displaystyle \varepsilon \in (0,2)}{\displaystyle \varepsilon \in (0,2)}, one thus finds

{\displaystyle \sum _{n=0}^{\infty }(-1+\varepsilon )^{n}={\frac {1}{1-(-1+\varepsilon )}}={\frac {1}{2-\varepsilon }},}{\displaystyle \sum _{n=0}^{\infty }(-1+\varepsilon )^{n}={\frac {1}{1-(-1+\varepsilon )}}={\frac {1}{2-\varepsilon }},}
and so the limit {\displaystyle \varepsilon \to 0}\varepsilon \to 0 of series evaluations is

{\displaystyle \lim _{\varepsilon \to 0}\lim _{N\to \infty }\sum _{n=0}^{N}(-1+\varepsilon )^{n}={\frac {1}{2}}.}{\displaystyle \lim _{\varepsilon \to 0}\lim _{N\to \infty }\sum _{n=0}^{N}(-1+\varepsilon )^{n}={\frac {1}{2}}.}
However, as mentioned, the series obtained by switching the limits,

{\displaystyle \lim _{N\to \infty }\lim _{\varepsilon \to 0}\sum _{n=0}^{N}(-1+\varepsilon )^{n}=\sum _{n=0}^{\infty }(-1)^{n}}{\displaystyle \lim _{N\to \infty }\lim _{\varepsilon \to 0}\sum _{n=0}^{N}(-1+\varepsilon )^{n}=\sum _{n=0}^{\infty }(-1)^{n}}
is divergent.

In the terms of complex analysis, {\displaystyle {\tfrac {1}{2}}}{\tfrac {1}{2}} is thus seen to be the value at {\displaystyle z=-1}z=-1 of the analytic continuation of the series {\displaystyle \sum _{n=0}{N}z{n}}{\displaystyle \sum _{n=0}{N}z{n}}, which is only defined on the complex unit disk, {\displaystyle |z|<1}|z|<1.

3 Early ideas

4 Divergence

5 Education

5.1 Cognitive impact

5.2 Preconceptions

5.3 Prospects

6 Summability

7 Related problems

8 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值