Generating function

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the “variable” remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.[1] One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed.

Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations defined for formal series. These expressions in terms of the indeterminate x may involve arithmetic operations, differentiation with respect to x and composition with (i.e., substitution into) other generating functions; since these operations are also defined for functions, the result looks like a function of x. Indeed, the closed form expression can often be interpreted as a function that can be evaluated at (sufficiently small) concrete values of x, and which has the formal series as its series expansion; this explains the designation “generating functions”. However such interpretation is not required to be possible, because formal series are not required to give a convergent series when a nonzero numeric value is substituted for x. Also, not all expressions that are meaningful as functions of x are meaningful as expressions designating formal series; for example, negative and fractional powers of x are examples of functions that do not have a corresponding formal power series.

Generating functions are not functions in the formal sense of a mapping from a domain to a codomain. Generating functions are sometimes called generating series,[2] in that a series of terms can be said to be the generator of its sequence of term coefficients.

Contents

1 Definitions

A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.

— George Pólya, Mathematics and plausible reasoning (1954)
A generating function is a clothesline on which we hang up a sequence of numbers for display.

— Herbert Wilf, Generatingfunctionology (1994)

1.1 Ordinary generating function (OGF)

1.2 Exponential generating function (EGF)

1.3 Poisson generating function

1.4 Lambert series

1.5 Bell series

1.6 Dirichlet series generating functions (DGFs)

1.7 Polynomial sequence generating functions

2 Ordinary generating functions

2.1 Examples of generating functions for simple sequences

2.2 Rational functions

2.3 Operations on generating functions

2.3.1 Multiplication yields convolution

2.3.2 Shifting sequence indices

2.3.3 Differentiation and integration of generating functions

2.3.4 Enumerating arithmetic progressions of sequences

2.4 P-recursive sequences and holonomic generating functions

2.4.1 Definitions

2.4.2 Examples

2.4.3 Software for working with P-recursive sequences and holonomic generating functions

2.5 Relation to discrete-time Fourier transform

2.6 Asymptotic growth of a sequence

2.6.1 Asymptotic growth of the sequence of squares

2.6.2 Asymptotic growth of the Catalan numbers

2.7 Bivariate and multivariate generating functions

2.8 Representation by continued fractions (Jacobi-type J-fractions)

2.8.1 Definitions

2.8.2 Properties of the hth convergent functions

2.8.3 Examples

3 Examples

3.1 Ordinary generating function

3.2 Exponential generating function

3.3 Lambert series

3.4 Bell series

3.5 Dirichlet series generating function

3.6 Multivariate generating functions

4 Applications

4.1 Various techniques: Evaluating sums and tackling other problems with generating functions

4.1.1 Example 1: A formula for sums of harmonic numbers

4.1.2 Example 2: Modified binomial coefficient sums and the binomial transform

4.1.3 Example 3: Generating functions for mutually recursive sequences

4.2 Convolution (Cauchy products)

4.2.1 Example: The generating function for the Catalan numbers

4.2.2 Example: Spanning trees of fans and convolutions of convolutions

4.3 Implicit generating functions and the Lagrange inversion formula

4.4 Introducing a free parameter (snake oil method)

4.5 Generating functions prove congruences

4.5.1 The Stirling numbers modulo small integers

4.5.2 Congruences for the partition function

4.6 Transformations of generating functions

4.7 Other applications

5 Other generating functions

5.1 Examples

5.2 Convolution polynomials

5.3 Tables of special generating functions

6 History

7 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值