Logarithm

对数是指数运算的逆运算,由约翰·纳皮尔在1614年引入以简化计算。它们在科学、工程、导航等领域广泛应用,如简化乘法为加法。对数有不同的基底,如常用对数(10)、自然对数(e≈2.718)和二进制对数。对数尺度如分贝和pH值也是其应用实例。对数还与滑尺规则、算法复杂度、音乐理论、数论等有密切关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number x to the base b is the exponent to which b must be raised, to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e ≈ 2.718 as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base 2 and is frequently used in computer science.

Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations.[1] They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accuracy computations more easily. Using logarithm tables, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition. This is possible because the logarithm of a product is the sum of the logarithms of the factors:

{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}{\displaystyle \log _{b}(xy)=\log _{b}x+\log _{b}y,}
provided that b, x and y are all positive and b ≠ 1. The slide rule, also based on logarithms, allows quick calculations without tables, but at lower precision. The present-day notion of logarithms comes from Leonhard Euler, who connected them to the exponential function in the 18th century, and who also introduced the letter e as the base of natural logarithms.[2]

Logarithmic scales reduce wide-ranging quantities to smaller scopes. For example, the decibel (dB) is a unit used to express ratio as logarithms, mostly for signal power and amplitude (of which sound pressure is a common example). In chemistry, pH is a logarithmic measure for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and of geometric objects called fractals. They help to describe frequency ratios of musical intervals, appear in formulas counting prime numbers or approximating factorials, inform some models in psychophysics, and can aid in forensic accounting.

The concept of logarithm as the inverse of exponentiation extends to other mathematical structures as well. However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.

在这里插入图片描述

Plots of logarithm functions, with three commonly used bases. The special points logb b = 1 are indicated by dotted lines, and all curves intersect in logb 1 = 0.

Contents
1 Motivation
2 Definition
2.1 Examples
3 Logarithmic identities
3.1 Product, quotient, power, and root
3.2 Change of base
4 Particular bases
5 History
6 Logarithm tables, slide rules, and historical applications
6.1 Log tables
6.2 Computations
6.3 Slide rules
7 Analytic properties
7.1 Existence
7.2 Characterization by the product formula
7.3 Graph of the logarithm function
7.4 Derivative and antiderivative
7.5 Integral representation of the natural logarithm
7.6 Transcendence of the logarithm
8 Calculation
8.1 Power series
8.1.1 Taylor series
8.1.2 Inverse hyperbolic tangent
8.2 Arithmetic–geometric mean approximation
8.3 Feynman’s algorithm
9 Applications
9.1 Logarithmic scale
9.2 Psychology
9.3 Probability theory and statistics
9.4 Computational complexity
9.5 Entropy and chaos
9.6 Fractals
9.7 Music
9.8 Number theory
10 Generalizations
10.1 Complex logarithm
10.2 Inverses of other exponential functions
10.3 Related concepts
11 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值