数学/线性代数 {行列式, 行列式变换,行列式操作,行列式计算}

数学/线性代数 {行列式, 行列式变换,行列式操作,行列式计算}
@LOC: 5

行列式

定义

给定方形矩阵S [ a b c d ] \begin{bmatrix} a & b \\ c & d\end{bmatrix} [acbd], 其对应的行列式 记作 d e t ( S ) det(S) det(S) ∣ S ∣ |S| S (determinant行列式) 为 ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d\end{vmatrix} acbd ;

虽然他俩非常相像 元素排列都一样 只是符号不同, 但他俩有本质的不同;
. 矩阵不是标量 是独立的一个数学对象, 而行列式是标量, 具体计算公式如下;

给定 n ∗ n n*n nn方形矩阵S, 其对应的行列式(标量)等于: det ⁡ ( S ) = ∑ p ∈ P f ( p ) ∏ i = 1 n S i , p [ i ] \displaystyle \det(S)=\sum _{p \in P} f(p)\prod _{i=1}^{n}S_{i,p[i]} det(S)=pPf(p)i=1nSi,p[i];
. P P P [ 1 , 2 , . . . , n ] [1,2,...,n] [1,2,...,n]所有全排列集合;
. . P P P的集合大小是 n ! n! n!;
. . 比如 n = 3 n=3 n=3, 则 P = { [ 1 , 2 , 3 ] , [ 1 , 3 , 2 ] , [ 2 , 1 , 3 ] , [ 2 , 3 , 1 ] , [ 3 , 1 , 2 ] , [ 3 , 2 , 1 ] } P = \{ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]\} P={[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]};
. p ∈ P p \in P pP表示 P P P中的一个元素, 称为一个排列;
. . 比如 n = 3 n=3 n=3, p p p可以为某个排列 [ 2 , 1 , 3 ] [2,1,3] [2,1,3];
. f ( p ) f(p) f(p)为符号函数: [1 如果p排列中的逆序对个数为 偶数, 则为 1 1 1], [2 否则为 − 1 -1 1];
. . 比如 p = [ 2 , 3 , 1 , 4 ] p = [2, 3, 1, 4] p=[2,3,1,4], 其逆序对个数为 1 + 1 = 2 1+1 = 2 1+1=2, 故 f ( p ) = 1 f(p) = 1 f(p)=1;
. p ( i ) p(i) p(i)表示p这个排列中 第 i i i个元素;
. . 比如 p = [ 1 , 2 , 3 , 4 ] p = [1, 2, 3, 4] p=[1,2,3,4], 则 p [ 1 ] = 1 p[1] = 1 p[1]=1;

比如, 方形矩阵 S S S [ a b c d e f g h i ] \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} adgbehcfi :
. 排列[1,2,3], 其 f ( ) = 1 f() = 1 f()=1, 故该项为 a e i aei aei;
. 排列[1,3,2], 其 f ( ) = − 1 f() = -1 f()=1, 故该项为 − a f h -afh afh;
. 排列[2,1,3], 其 f ( ) = − 1 f() = -1 f()=1, 故该项为 − b d i -bdi bdi;
. 排列[2,3,1], 其 f ( ) = 1 f() = 1 f()=1, 故该项为 b f g bfg bfg;
. 排列[3,1,2], 其 f ( ) = 1 f() = 1 f()=1, 故该项为 c d h cdh cdh;
. 排列[3,2,1], 其 f ( ) = − 1 f() = -1 f()=1, 故该项为 − c e g -ceg ceg;
. 所有这些项相加起来, a e i + b f g + c d h − c e g − b d i − a f h aei + bfg + cdh - ceg - bdi - afh aei+bfg+cdhcegbdiafh 即为行列式 ∣ S ∣ |S| S的值;

相关术语

特殊{三角形,对角}行列式

N阶行列式, 令左上角的K( K ∈ [ 1 , N − 1 ] K \in [1, N-1] K[1,N1])阶行列式为 L U LU LU, 右下角的 N − K N-K NK阶行列式为 R D RD RD;
. 除了{LU,RD}外, 其他剩余元素 以对角线分割成 左下部分 L D LD LD 和 右上部分 R U RU RU;

L D LD LD均为0, 则该行列式为特殊 上三角形行列式;
R U RU RU均为0, 则该行列式为特殊 下三角形行列式;
L D , R U {LD,RU} LD,RU均为0, 则该行列式为特殊 对角行列式;

@Delimiter

转置行列式

将行列式D 以主对角线为轴 进行对称翻转, 得到其转置行列式 D T D^T DT; (Transposition转置, 换位)
. 比如, ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} acbd 的转置行列式为 ∣ a c b d ∣ \begin{vmatrix} a & c \\ b & d \end{vmatrix} abcd ;

对角行列式

所有的非0元素 只存在于主对角线上;

(上/下)三角形行列式

上三角形行列式: 所有的非0元素 只存在于主对角线的上面(包括主对角线);
. 比如, ∣ 1 1 1 0 1 1 0 0 1 ∣ \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{vmatrix} 100110111 是上三角形行列式;

同理, 可得下三角形行列式;

主对角线

从左上角 ( 1 , 1 ) (1,1) (1,1) 到 右下角 ( n , n ) (n,n) (n,n)这条线上的 所有元素;
. 他不是标量 不是指这些元素的乘积啥的, 就是指这些元素本身;

副对角线

从右上角 ( 1 , n ) (1,n) (1,n) 到 左下角 ( n , 1 ) (n,1) (n,1)这条线上的 所有元素;

性质

{行,列}是等价的

行列式里的{行,列}是具有同等地位, 或者说是等价的;
任何对行成立的性质 同样也对列成立; 比如, 行列式的变换规则 对行和对列 都是适用的;

{三角形行列式,对角行列式 }的值, 等于主对角线的乘积

假如这3类行列式的主对角线元素为: a 1 , a 2 , . . . , a n a1, a2, ..., an a1,a2,...,an, 则该行列式的值为 a 1 ∗ a 2 ∗ . . . ∗ a n a1*a2 * ... * an a1a2...an;
. 注意, 这里不涉及到正负号问题, 或者说 主对角线这项 永远是正的 (而副对角线这项 可能是正 可能是负), 因此, 就单纯是主对角线上这些元素的乘积;

行列式计算的n!项中: 一半正号, 另一半是负号

n ≥ 2 n\geq 2 n2阶行列式, 一共是有 n ! n! n!项 (他是偶数), 这些项里 一半是正号 一半是负号;

@Delimiter

行列式变换: 参见@Mark_2;

@Delimiter

特殊{三角形,对角}行列式的计算公式 @Mark_3

该行列式的4个区域 L U , L D , R D , R U LU, LD, RD, RU LU,LD,RD,RU, 行列式的值等于 L U ∗ R D LU * RD LURD;

证明

特殊下三角形行列式为例 (对于特殊{上三角形,对角}行列式, 也是通用的) ∣ A 1 , 1 . . . A 1 , K 0 . . . 0 L U 0 R U 0 A K , 1 . . . A K , K 0 . . . 0 − − − A K + 1 , K + 1 . . . A K + 1 , N ∣ L D ∣ R D − − − A N , K + 1 . . . A N , N ∣ \begin{vmatrix} A_{1,1} & ... & A_{1,K} & 0 & ... & 0 \\ & LU & & 0 & RU & 0\\ A_{K,1} & ... & A_{K,K} & 0 & ... & 0 \\ - & - & - & A_{K+1,K+1} & ... & A_{K+1, N}\\ | & LD & | & & RD & \\ - & - & - & A_{N,K+1} & ... & A_{N,N} \end{vmatrix} A1,1AK,1...LU...LDA1,KAK,K000AK+1,K+1AN,K+1...RU......RD...000AK+1,NAN,N
. L U LU LU这个行列式, 通过行列式的行变换(类似于高斯消元, 从 [ A K , K , A K − 1 , K − 1 , . . . , A 1 , 1 ] [A_{K,K}, A_{K-1,K-1}, ..., A_{1,1}] [AK,K,AK1,K1,...,A1,1]依次遍历, 使用行变换 会变成一个下三角行列式, 假设该行列式对角线为 L 1 , L 2 , . . . , L K L_1,L_2,...,L_K L1,L2,...,LK;
. 虽然这个行变换是单独针对 L U LU LU行列式进行的, 但现在你将此行变换 推广到整个矩阵里, 也就是, 原先行操作的对象是 A i , 1 , A i , 2 , . . . , A i , K A_{i,1}, A_{i,2}, ..., A_{i,K} Ai,1,Ai,2,...,Ai,K, 现在变成了 A i , 1 , A i , 2 , . . . , A i , K , 0 , . . . , 0 A_{i,1}, A_{i,2}, ..., A_{i,K}, 0, ..., 0 Ai,1,Ai,2,...,Ai,K,0,...,0 (加上右侧的这些0);
. 此时, 即使在这个整个的行列式里, 执行此操作, 他并不会影响 R U , L D , R D RU, LD, RD RU,LD,RD, 只会将 L U LU LU变为一个下三角形行列式 (其对角线元素, 为上面所说的 L 1 , L 2 , . . . , L k L_1, L_2, ..., L_k L1,L2,...,Lk);
. 同理, 对 R D RD RD进行从 A N , N , A N − 1 , N − 1 , . . . , A K + 1 , K + 1 A_{N,N}, A_{N-1,N-1}, ..., A_{K+1, K+1} AN,N,AN1,N1,...,AK+1,K+1的高斯消元 行列式的列变换 , 将其变为下三角形行列式; 具体流程, 和上面LU的处理一样; 假设其最终得到的下三角形行列式的对角线元素为 R K + 1 , R K + 2 , . . . , R N R_{K+1}, R_{K+2}, ..., R_N RK+1,RK+2,...,RN;

最终该行列式会变为: ∣ L 1 0... 0 0 . . . 0 . . . L 2 0 0 R U 0 . . . . . . L K 0 . . . 0 − − − R K + 1 0... 0 ∣ L D ∣ . . . R K + 2 0 − − − . . . . . . R N ∣ \begin{vmatrix} L_1 & 0... & 0 & 0 & ... & 0 \\ ... & L2& 0 & 0 & RU & 0\\ ... & ... & L_K & 0 & ... & 0 \\ - & - & - & R_{K+1} & 0... & 0 \\ | & LD & | & ... & R_{K+2} & 0 \\ - & - & - & ... & ... & R_{N} \end{vmatrix} L1......0...L2...LD00LK000RK+1.........RU...0...RK+2...00000RN , 即下三角形行列式, 其值为 L U ∗ R D LU * RD LURD;

@Delimiter

任意行列式 都可以转换为{三角形,对角}行列式

其实这很简单 因为 行列式的本质 就是一个标量;
. 比如某个行列式 D D D的值为 x x x, 那么此时构造一个新的行列式 A A A 使得 A [ 1 ] [ 1 ] = x A[1][1] = x A[1][1]=x 对角线其他元素为 1 1 1 然后剩余其他所有元素均为0;
. 该对角行列式A (当然也是三角形行列式), 与原行列式D等价, 因为他们的值相同;

@Delimiter

3阶行列式的计算技巧

对于3阶行列式 ∣ a b c d e f g h i ∣ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i\end{vmatrix} adgbehcfi , 在其右侧再复制一份 形成一个特殊矩形 a b c a b c d e f d e f g h i g h i \begin{matrix} a & b & c & a & b & c\\ d & e & f & d & e & f \\ g & h & i & g & h & i \end{matrix} adgbehcfiadgbehcfi
. 从原行列式中的主对角线 a e i aei aei开始, 向右移动1次得到 b f g bfg bfg, 再向右移动1次得到 c d h cdh cdh;
. . 这3项都为正的;
. 同理, 从原行列式中的副对角线 c e g ceg ceg开始, 同样得到 a f h , b d i afh, bdi afh,bdi, 这3项均为负的;

这个技巧说明, 在3阶行列式里, 形如从左上到右下的趋势 即该项为正, 而形如从右上到左下的趋势 即为负;
. 但是, 这仅适用于3阶行列式! 不适用于一般行列式; 对于一般行列式, 你不能使用上面的技巧, 也不能说有从右上到左下的趋势 就是负号 (最简单的反例是 n = 4 n=4 n=4时, 副对角线是正号的, 而不是负号);

@Delimiter

错误汇总

主对角线这一项为正号, 但副对角线这项 不一定为负号

主对角线这项一定是正号, 因为其排列是 [ 1 , 2 , 3 , . . . , n ] [1,2,3,...,n] [1,2,3,...,n], 逆序对个数为0;

但不要认为副对角线这项 一定是负号, 虽然 n = 2 ∣ 3 n=2|3 n=2∣3时 确实如此, 但不要惯性思维! 还是要从定义的逆序对个数的奇偶性出发;
. 副对角线的排列是 [ n , n − 1 , . . . , 2 , 1 ] [n,n-1,...,2,1] [n,n1,...,2,1], 其逆序对个数为 n ∗ ( n − 1 ) / 2 n * (n-1) / 2 n(n1)/2;
. . 因此, 比如 n = 4 n = 4 n=4时 其逆序对个数为偶数, 副对角线为正号, 而不是负号;

@Delimiter

行列式的{转置,拆分,翻转,旋转}操作

定义

因为行列式 本质上 就是一个数值, 所以 我们讨论的是 ∣ A ∣ |A| A (A为方块矩阵), 也就是 我们的操作的 其实不是行列式, 而是一个方阵 (对他操作, 然后比较操作前后的行列式);
o p ( A ) op(A) op(A)来表示 对方阵 A A A进行 某种操作;

@DELI;

按主对角线 翻转 (即转置);

这也就是 转置行列式的概念 ( o p ( A ) = A T op(A) = A^T op(A)=AT), 即 ∣ A ∣ = ∣ o p ( A ) ∣ |A| = |op(A)| A=op(A);

@DELI;

拆分某一[行/列], 等价于 2个行列式的相加;

具体操作为: 令 A R r = [ b 1 + c 1 , b 2 + c 2 , . . . , b N + c N ] AR_r = [b1+c1, b2+c2, ..., bN+cN] ARr=[b1+c1,b2+c2,...,bN+cN] (同样适用于), 令 B , C B,C B,C方阵的行: B R i = C R i = A R i ( i ≠ r ) BR_i = CR_i = AR_i (i \neq r) BRi=CRi=ARi(i=r), B R r = [ b 1 , b 2 , . . . , b N ] , C R r = [ c 1 , c 2 , . . . , c N ] BR_r = [b1,b2,...,bN], CR_r = [c1,c2,...,cN] BRr=[b1,b2,...,bN],CRr=[c1,c2,...,cN], 则有: A = B + C A = B + C A=B+C;

@DELI;

按次对角线 翻转;

具体操作为: A [ i ] [ j ] = o p ( A ) [ N − j ] [ N − i ] A[i][j] = op(A)[ N-j][ N-i] A[i][j]=op(A)[Nj][Ni], 行列式为: ∣ A ∣ = ∣ o p ( A ) ∣ |A| = |op(A)| A=op(A) (相同);

@DELI;

水平翻转;

具体操作为: A [ i ] [ j ] = o p ( A ) [ i ] [ N − j ] A[i][j] = op(A)[ i][ N-j] A[i][j]=op(A)[i][Nj], (当A的阶数 > 1 >1 >1时) 行列式为: ∣ A ∣ = − ∣ o p ( A ) ∣ |A| = - |op(A)| A=op(A) (取负);

@DELI;

垂直翻转;

具体操作为: A [ i ] [ j ] = o p ( A ) [ N − i ] [ j ] A[i][j] = op(A)[ N-i][ j] A[i][j]=op(A)[Ni][j], (当A的阶数 > 1 >1 >1时) 行列式为: ∣ A ∣ = − ∣ o p ( A ) ∣ |A| = - |op(A)| A=op(A) (取负);

@DELI;

顺时针90度旋转;

具体操作为: o p ( A ) [ i ] [ j ] = A [ N − j ] [ i ] op(A)[ i][ j] = A[N-j][i] op(A)[i][j]=A[Nj][i], 行列式为: ( A A A的阶数为奇数时: ∣ A ∣ = ∣ o p ( A ) ∣ |A| = |op(A)| A=op(A) 相同), (当为偶数时: ∣ A ∣ = − ∣ o p ( A ) ∣ |A| = -|op(A)| A=op(A) 取负);

性质

证明: 转置操作 行列式的值不变 ;

行列式里的{行,列}是具有同等地位, 或者说是等价的, 对行成立的性质 同样也对列成立, 比如, 行列式的变换规则 对行和对列 都是适用的;

我自己的一个证明;
. 任意行列式D, 通过行变换, 可以转换为上三角形行列式 U U U;
. 而行列式变换规则 不仅适用于行 也适用于列, 因此 将行变换改为对应的列变换, 对 D T D^T DT执行对应的列变换, 最终会得到一个下三角行列式 D D D;
. U = D T U = D^T U=DT, 因此两个行列式相等;

@DELI;

证明: 行列式的拆分;

( A ) ∣ a b c x 1 + x 2 y 1 + y 2 z 1 + z 2 d e f ∣   =   ( B ) ∣ a b c x 1 y 1 z 1 d e f ∣   +   ( C ) ∣ a b c x 2 y 2 z 2 d e f ∣ (A)\begin{vmatrix} a & b & c \\ x1+x2 & y1+y2 & z1+z2 \\ d & e & f \end{vmatrix} \ = \ (B)\begin{vmatrix} a & b & c \\ x1 & y1 & z1 \\ d & e & f \end{vmatrix} \ + \ (C) \begin{vmatrix} a & b & c \\ x2 & y2 & z2 \\ d & e & f \end{vmatrix} (A) ax1+x2dby1+y2ecz1+z2f  = (B) ax1dby1ecz1f  + (C) ax2dby2ecz2f
. 对于A中任一项 p ∈ P p \in P pP (p表示一个排列), A A A中的这一项 等于 B中的该项 + C中该项;
. . 比如, p = [ 1 , 2 , 3 ] p = [1,2,3] p=[1,2,3], 则 ( − 1 ) p ∗ a ∗ ( y 1 + y 2 ) ∗ f = ( − 1 ) p ∗ a ∗ y 1 ∗ f + ( − 1 ) p ∗ a ∗ y 2 ∗ f (-1)^p*a*(y1+y2)*f = (-1)^p*a*y1*f + (-1)^p*a*y2*f (1)pa(y1+y2)f=(1)pay1f+(1)pay2f;

行列式变换

@Mark_2
MARK: @LOC_2;

定义

操作1: 交换两[行/列];

原行列式为A 新行列式为B, 则 A = − 1 ∗ B A = -1 * B A=1B;

符号表示: r i ↔ r j r_i \leftrightarrow r_j rirj 交换两行 ( r i r_i ri表示行, c i c_i ci表示列);

@DELI;

操作2: 某一[行/列]同乘K;

原行列式为A 新行列式为B, 则 A = 1 K ∗ B A = \frac{1}{K} * B A=K1B;

符号表示: r i ∗ K r_i * K riK (或 r i / K r_i / K ri/K) ( r i r_i ri表示行, c i c_i ci表示列);
. 注意, 是单独一个 ∗ * 乘号, 虽然他的意思是累乘, 但不可以使用C语言的*=符号;

@DELI;

操作3: 某一[行/列], 累加上 另一[行/列]的倍数;

原行列式为A 新行列式为B, 则 A = B A = B A=B;

符号表示: r i + K ∗ r j r_i + K*r_j ri+Krj ( r i r_i ri表示行, c i c_i ci表示列);
. 注意, 是单独一个 + + +加号, 虽然他的意思是累加, 但不可以使用C语言的+=符号;
. r i + r j + r k r_i + r_j + r_k ri+rj+rk表示: ri += (rj + r_k);

错误汇总

行列式变换, 不同于 增广矩阵的初等行变换;

1 一个是行列式, 一个是矩阵, 本身就不同;
2 比如, 增广矩阵的初等行变换中的交换两行, 交换前后 两个矩阵是完全等价的 (就相当于交换了两个方程式的上面位置, 没有任何影响);
. 而行列式的交换两行, 行列式的值 要变换正负号的!
3 行列式变换 也可以针对列而言 (比如交换两列 也是可以的), 因为{行,列}在行列式中的地位是同等对待的, 对行满足的性质 同样可以使用于列;
. 但增广矩阵 是不可以针对列的, 比如交换两列 这在增广矩阵里肯定不行不通的;

性质

操作3的证明
假如执行了Ri += K * Rj, 那么将B拆分成2个行列式 {A, X}, 其中X里的第i行为 K ∗ R j K*Rj KRj (即i行是j行的倍数) 因此, X行列式为0;

@DELI;

操作2的推论:
若行列式A有两[行/列]成比例, 则 A = 0 A = 0 A=0;

证明
假如 R i = K ∗ R j Ri = K* Rj Ri=KRj, 则将Rj *= (1/K)得到新行列式 B B B, 即 A = K ∗ B A = K * B A=KB;
. 因为B有2行相同, 所以 B = 0 B = 0 B=0;

@DELI;

操作2的证明;
假如行列式计算的所有项是a1 + a2 + ..., 那么执行该操作后 新行列式计算的所有项为K*a1 + K*a2 + K*..., 即为原行列式的K倍;

@DELI;

操作1的证明:
假如交换 R i , R j Ri, Rj Ri,Rj, 行列式计算里的 n ! n! n!个项, 每一项都会涉及这两行, 交换两行对每一项的影响是 在其排列中交换了两个元素, 根据CSDN--128642850--@Mark_1, 其逆序对的个数 会发生奇偶性的变化;
. 因此, 对于任一项, 假如原来是正号 则交换后会变成负号 (比如原来是a + (-b) + c + (-d), 则现在会是(-a) + b + (-c) + d), 故 整体行列式 变换正负号;

@DELI;

操作1的推论:
若行列式|A|有两个[行/列]完全相同, 则* ∣ A ∣ = 0 |A| = 0 A=0;

证明
行列式A的 R i , R j Ri, Rj Ri,Rj两个行相同, 则我们交换这两行 得到新的行列式B;
. [1 这两个行列式元素完全相同, 所以 A = B A = B A=B;]–[2 因为执行了交换两行, 所以 A = − B A = -B A=B]
. 因此, A = B = 0 A = B = 0 A=B=0;

@DELI;

任意行列式 都可以通过行列式变换规则, 转换为三角形行列式 @Mark_1
. 注意, 这与@Mark_0本质上是不同的;

证明
1 转变为: 形如 K ∗ U K*U KU (其中K为常数, U为上三角形行列式);
. 有点类似于高斯消元; 依次遍历主对角线(1,1) (2,2) (3,3) ..., 对于当前元素(i,i), 从([i, i+1, i+2, ..., n], i)里选择一行j 满足(j,i) != 0, 然后将他和i行 交换 (注意交换会导致K *= -1), 再对[i+1, i+2, ..., n]这些行执行Rj += K * Ri操作 使得([i+1, i+2, ..., n], i)这些元素均为0;
. 最终, 其会变成形如 K ∗ U K * U KU的形式;
2 将 K K K乘到行列式U里面的某一行, 此时就变成了 真正的 上三角形行列式;
3 执行置换 (不影响行列式值), 变成了 下三角形行列式;

@DELI;

行列式 不一定能通过行列式变换规则, 转换为对角行列式;
不知真假否…

粗略证明
. 假如使用@Mark_1得到了上三角形行列式, 此时按照高斯消元会进行回溯;
. 当前我们在(n,n)位置, 假如当前位置为0, 那么就无法使得他上面的元素变成0; (如果你使用swap, 将上面某行交换到当前行, 那么就导致: 原本左下角已经变成了全为0, 你一swap 左下角就不再是全0了)

@DELI;

范德蒙德行列式

定义

∣ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ \begin{vmatrix} 1 & 1 & ... & 1 \\ x_1 & x_2 & ... & x_n \\ x_1^2 & x_2^2 & ... & x_n^2 \\ ... \\ x_1^{n-1} & x_2^{n-1} & ... & x_n^{n-1} \end{vmatrix} 1x1x12...x1n11x2x22x2n1............1xnxn2xnn1
. 因为行列式可以置换, 所以置换后 你可以得到另一种形式的 完全相同的 范德蒙德行列式;

求解 @Mark_4

行列式的值为: ∏ i = 1 n − 1 ∏ j = i + 1 n ( x j − x i ) \displaystyle \prod_{i = 1}^{n-1} \prod_{j=i+1}^{n} (x_j - x_i) i=1n1j=i+1n(xjxi);

证明

遍历for( r : [n, ..., 2]), 执行 R r − x 1 ∗ R r − 1 R_r - x_1 * R_{r-1} Rrx1Rr1, 得到: ∣ 1 1 . . . 1 0 x 2 − x 1 . . . x n − x 1 0 x 2 ( x 2 − x 1 ) . . . x n ( x n − x 1 ) . . . 0 x 2 n − 2 ( x 2 − x 1 ) . . . x n n − 2 ( x n − x 1 ) ∣ \begin{vmatrix} 1 & 1 & ... & 1 \\ 0 & x_2-x_1 & ... & x_n-x_1 \\ 0 & x_2(x_2 - x_1) & ... & x_n(x_n - x_1) \\ ... \\ 0 & x_2^{n-2}(x_2 - x_1) & ... & x_n^{n-2}(x_n - x_1) \end{vmatrix} 100...01x2x1x2(x2x1)x2n2(x2x1)............1xnx1xn(xnx1)xnn2(xnx1)
根据拉普拉斯展开, 原行列式 等于 去掉{第1行,第1列}后的行列式;

从每一列中, 提取出来 ( x 2 − x 1 ) ( x 3 − x 1 ) . . . ( x n − x 1 ) (x_2 - x_1) (x_3 - x_1) ... (x_n - x_1) (x2x1)(x3x1)...(xnx1), 此时的行列式为 ∣ 1 1 . . . 1 x 2 x 3 . . . x n x 2 2 x 3 2 . . . x n 2 . . . x 2 n − 2 x 3 n − 2 . . . x n n − 2 ∣ \begin{vmatrix} 1 & 1 & ...& 1 \\ x_2 & x_3 & ... & x_n \\ x_2^2 & x_3^2 & ... & x_n^2 \\ ... \\ x_2^{n-2} & x_3^{n-2} & ... & x_n^{n-2} \end{vmatrix} 1x2x22...x2n21x3x32x3n2............1xnxn2xnn2
再执行相同的操作, 提取出来 ( x 3 − x 2 ) ( x 4 − x 2 ) . . . ( x n − x 2 ) (x_3 - x_2) (x_4 - x_2) ... (x_n - x_2) (x3x2)(x4x2)...(xnx2);

直到最后, 行列式变为 ∣ 1 1 x n − 1 x n ∣ \begin{vmatrix} 1 & 1 \\ x_{n-1} & x_n\end{vmatrix} 1xn11xn , 其等于 ( x n − x n − 1 ) (x_n - x_{n-1}) (xnxn1);

行列式计算

定义

定义法: n ! n! n!个项(通过逆序对个数判断正负)的相加;

@DELI;

拉普拉斯展开: 令某一[行/列]的元素为 [ a 1 , a 2 , . . . , a N ] [a1,a2,...,aN] [a1,a2,...,aN], 则 ∣ A ∣ = ∑ a i ∗ A l g e ( a i ) |A| = \sum ai*Alge(ai) A=aiAlge(ai) (Alge为该元素对应的代数余子式);

@DELI;

零行列式的特殊判定技巧:

性质1: 当方阵A 有1个[行/列] 全为 0 0 0, 则 ∣ A ∣ = 0 |A| = 0 A=0;
. 通过拉普拉斯展开可证明;

性质2: 当方阵A 有2个[行/列] 成比例, 则 ∣ A ∣ = 0 |A| = 0 A=0;
. 证明: 通过行列式操作-3, 可得到一个全为 0 0 0的[行/列], 就变成了性质1;

性质3: 当方阵A 有3个[行/列], 他们有2个差值, 如果这2个差值成比例, 则 ∣ A ∣ = 0 |A| = 0 A=0;
. 证明: 比如3个行 R 1 , R 2 = R 1 + D , R 3 = R 1 + K ∗ D R1,R2 = R1+D,R3=R1+K*D R1,R2=R1+D,R3=R1+KD (他们有2个差值: D , K ∗ D D, K*D D,KD), 通过行列式操作-3, R 2 − R 1 , R 3 − R 1 R2-R1, R3-R1 R2R1,R3R1, 此时 R 1 , R 2 R1,R2 R1,R2会变成 D , K ∗ D D, K*D D,KD, 就变成了性质2;

@DELI;

性质

借助 (零行列式的特殊判定技巧-性质3), 当 n > 2 n>2 n>2时, 你用 1 , 2 , 3 , . . . . 1,2,3,.... 1,2,3,....从行列式的左上角开始 按行的填充, 即形如: 123 456 789 \displaystyle \begin{matrix} 123\\ 456\\ 789 \end{matrix} 123456789, 这样的行列式 都是等于 0 0 0;
. 证明: 比如你取前3行 他们的差值[3,3,3] 是相同的;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值