线性代数|行列式对换及行列式性质

一、 定理1

一个排列中的任意两个元素对换,排列改变奇偶性

二、推论

奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。

三、定理2

n n n阶行列式也可以定义为 D = ∑ ( − 1 ) t a p 1 1 a p 2 2 ⋯ a p n n D=\sum (-1)^ta_{p_11}a_{p_22}\cdots a_{p_nn} D=(1)tap11ap22apnn,其中 t t t为行标排列 p 1 p 2 ⋯ p n p_1p_2\cdots p_n p1p2pn的逆序数。

四、性质1

行列式与它的转制行列式相等。

五、性质2

互换行列式的两行(列),行列式变号。

六、推论

如果行列式有两行(列)完全相同,则此行列式等于零。

七、性质3

行列式的某一行(列)中所有的元素都乘以同一数 k k k,等于用数 k k k乘此行列式。

八、推论

行列式中某一行的所有元素的公因子可以提到行列式记号的外面。

九、性质4

行列式中如果有两行(列)元素成比例,则此行列式等于零。

十、性质5

**若行列式的某一列(行)的元素都是两数之和,例如第 i i i列元素都是两数之和: D = ∣ a 11 a 12 ⋯ ( a 1 i + a 1 i ’ ) ⋯ a 1 n a 21 a 22 ⋯ ( a 2 i + a 2 i ’ ) ⋯ a 2 n ⋮ ⋮ ⋮

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值