一、 定理1
一个排列中的任意两个元素对换,排列改变奇偶性。
二、推论
奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数。
三、定理2
n n n阶行列式也可以定义为 D = ∑ ( − 1 ) t a p 1 1 a p 2 2 ⋯ a p n n D=\sum (-1)^ta_{p_11}a_{p_22}\cdots a_{p_nn} D=∑(−1)tap11ap22⋯apnn,其中 t t t为行标排列 p 1 p 2 ⋯ p n p_1p_2\cdots p_n p1p2⋯pn的逆序数。
四、性质1
行列式与它的转制行列式相等。
五、性质2
互换行列式的两行(列),行列式变号。
六、推论
如果行列式有两行(列)完全相同,则此行列式等于零。
七、性质3
行列式的某一行(列)中所有的元素都乘以同一数 k k k,等于用数 k k k乘此行列式。
八、推论
行列式中某一行的所有元素的公因子可以提到行列式记号的外面。
九、性质4
行列式中如果有两行(列)元素成比例,则此行列式等于零。
十、性质5
**若行列式的某一列(行)的元素都是两数之和,例如第 i i i列元素都是两数之和: D = ∣ a 11 a 12 ⋯ ( a 1 i + a 1 i ’ ) ⋯ a 1 n a 21 a 22 ⋯ ( a 2 i + a 2 i ’ ) ⋯ a 2 n ⋮ ⋮ ⋮