数学 {导数,可导,导函数}

数学 {导数,可导,导函数}
@LOC: 3

可导

定义

#可导(可微) Differentiable#

#单点可导#
前提: x 0 ∈ R x_0 \in \mathbb R x0R, lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0} \frac{ f(x) - f(x_0)}{x - x_0} limxx0xx0f(x)f(x0)等于某个实数
结论: 函数在 x 0 x_0 x0处可导

@DELI;

#开区间可导#
条件: 开区间 ( l , r ) (l,r) (l,r), ∀ x ∈ ( l , r ) , f ( x ) 在 x 处可导 \forall x \in (l,r), f(x)在x处可导 x(l,r),f(x)x处可导;
结论: 函数在开区间 ( l , r ) (l,r) (l,r)可导, 记作 D ( l , r ) D(l,r) D(l,r);

性质

@DELI;

#在a点可导    ⟹    \implies 隐喻了 f ( x ) f(x) f(x)在某个 U ( x 0 ) U(x_0) U(x0)有定义#

1: lim ⁡ x → x 0 ? \lim_{x \to x_0} ? limxx0? 表示某一 U ˚ ( x 0 ) \mathring U(x_0) U˚(x0), 而 ? ? ?里面有 f ( x ) f(x) f(x), 因此隐喻了 f ( x ) f(x) f(x)在某一 x 0 x_0 x0去心邻域上有定义;
2: ? ? ?里有 f ( x 0 ) f(x_0) f(x0), 故其在 x 0 x_0 x0肯定有定义;

@DELI;

#a点可导    ⟹    \implies 在a点连续#

即令 U = D f / { a } U = D_f / \{a\} U=Df/{a}, 令 g ( x ) = f ( x ) − f ( a ) x − a , x ∈ U g(x) = \frac{f(x) - f(a)}{x - a}, x \in U g(x)=xaf(x)f(a),xU; 此时有 lim ⁡ x → a g ( x ) = L \lim_{x \to a} g(x) = L limxag(x)=L, 令 g ( x ) g(x) g(x)的差分函数为 h ( x ) = L − g ( x ) , x ∈ U h(x) = L - g(x), x \in U h(x)=Lg(x),xU;
等式变换: g ( x ) = L − h ( x ) , f ( x ) − f ( a ) = L ∗ ( x − a ) − h ( x ) ∗ ( x − a ) g(x) = L - h(x), f(x) - f(a) = L*(x - a) - h(x)*(x-a) g(x)=Lh(x),f(x)f(a)=L(xa)h(x)(xa);
等式两侧同取极限: lim ⁡ x → a { f ( x ) − f ( a ) } = lim ⁡ x → a { L ∗ ( x − a ) − h ( x ) ∗ ( x − a ) } \lim_{x \to a} \{ f(x) - f(a) \} = \lim_{x \to a} \{ L*(x - a) - h(x)*(x-a)\} limxa{f(x)f(a)}=limxa{L(xa)h(x)(xa)};
. 右侧的极限, L ∗ ( x − a ) L * (x-a) L(xa)有界量乘以无穷小 为0, h ( x ) ∗ ( x − a ) h(x) * (x-a) h(x)(xa)两个无穷小的相乘 也是0;
故, lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) limxaf(x)=f(a);导数

错误

讨论函数在区间上可导 必须是开区间, 这是硬性规定…, 你不可以像定义 区间连续那样, 把 [ l , r ] [l,r] [l,r]可导 定义为 在 l , r l,r l,r为单侧可导; 不可以的, 规定就是 讨论区间可导的区间 必须是开区间;
. 我猜这样规定的原因是: 很多问题的讨论 都是建立在 C [ a , b ] , D ( a , b ) C[a,b], D(a,b) C[a,b],D(a,b)这个前提下的; 也就是 对于 D [ a , b ] D[a,b] D[a,b]的情况 他没有应用场景;

@DELI;

导数

定义

#导数 Derivative#
前提: f ( x ) f(x) f(x) x 0 x_0 x0可导;
结论: 函数在 x 0 x_0 x0导数 f ′ ( x 0 ) f'(x_0) f(x0) (且 f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0) = \lim_{x \to x_0} \frac{ f(x) - f(x_0)}{x - x_0} f(x0)=limxx0xx0f(x)f(x0));

错误

#把导数的定义式写成 lim ⁡ x → 0 f ( x ) x \lim_{x \to 0} \frac{f(x)}{x} limx0xf(x) 是错误的#

即便是你想把 x x x当做是 Δ x \Delta x Δx, 也就是 lim ⁡ Δ x → 0 f ( Δ x ) Δ x \lim_{\Delta x \to 0} \frac{ f( \Delta x)}{ \Delta x} limΔx0Δxf(Δx) 这个式子也是错误的!
比较下正确定义 lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0} \frac{ f(x) - f(x_0)}{ x - x_0} limxx0xx0f(x)f(x0), 即便当 x 0 = 0 x_0=0 x0=0时 也不一定有 f ( x ) − f ( x 0 ) = f ( x − x 0 ) f(x)-f(x_0) = f(x- x_0) f(x)f(x0)=f(xx0);

@DELI;

#一点的导数为 X X X, 并不说明其导函数在该点的极限为 X X X;#
讲过, 导函数是以单点导数来定义的, 不可以前后颠倒; 比如一个函数 只有在 X X X可导 而在其他任一点都不可导, 显然其导函数在该点 就不存在极限; 详见LINK: @LOC_2;

@DELI;

#函数在开区间 I I I严格单调, 如果是可导的话 则不存在导数为0的点;#

这是错误的, 比如 x 3 x^3 x3 ( − 1 , 1 ) (-1,1) (1,1)上是严格单调 且可导, 但 f ′ ( 0 ) = 0 f'(0) = 0 f(0)=0;

@DELI;

当不可导 且导数为 ∞ \infty , 你可能认为 此时函数值 是趋于 ∞ \infty 的 (函数在该点必然不连续), 其实这种看法是错误的;
或者说, 你是否觉得 C [ a , b ] C[a,b] C[a,b] ∃ x 0 ∈ ( a , b ) , f ′ ( x 0 ) = ∞ \exist x_0 \in (a,b), f'(x_0) = \infty x0(a,b),f(x0)= 这种的函数是不存在的?
. 关于导数为 ∞ \infty , 要记住一个函数 x 1 / 3 x^{1/3} x1/3 该函数在 R R R上 连续且可导 (在 x = 0 x=0 x=0处的导数为 ∞ \infty );

也就是: 可导必连续; 但是 (不可导 必然不连续)这是错误的;

@DELI;

MARK; @LOC_0;

一般我们会说 f ( x ) f(x) f(x) x 0 x_0 x0处的导数… 这当然没有错, 但如果从几何的角度 你应该把这个点 明确的指出, 即 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0));
因为导数定义 就是 d y d x \frac{dy}{dx} dxdy, 即在 y 0 y_0 y0的微分与在 x 0 x_0 x0的微分 的比值, 因此 你不仅要明确指定 x 0 x_0 x0 也要指定 y 0 y_0 y0 (只是对于函数, x指定了 y自然指定了), 强调这一点 是为了解释 参数方程的导数;

比如函数 f ( x ) f(x) f(x)对应的参数方程为 x = g ( t ) , y = h ( t ) x=g(t), y=h(t) x=g(t),y=h(t), 此时要求这个参数方程的导数;
如果你直接说 求在 t 0 t_0 t0处的导数, 这是歧义的, 因为他可以是 d x / d y dx/dy dx/dy 也可以是 d y / d x dy/dx dy/dx;
因此, 一定要从几何的角度来考虑导数, t 0 t_0 t0他肯定对应图像的某个点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) (此时讨论参数方程的导数, 其实和讨论函数的导数, 从几何意义上 两者是一样的)
比如说, 求y对x的导数, 即 d y / d x dy/dx dy/dx, 根据 y = h ( t ) y=h(t) y=h(t)得到 d y = h ′ ( t ) d t dy = h'(t) dt dy=h(t)dt, 同理 d x = g ′ ( t ) d t dx = g'(t)dt dx=g(t)dt, 那么 d y / d x = h ′ ( t ) / g ′ ( t ) dy /dx = h'(t) / g'(t) dy/dx=h(t)/g(t);

@DELI;

如果只是通过 y = ∣ x ∣ y=|x| y=x这个特例 去认识可导与连续的关系, 你可能会认为: 单侧连续的函数, 一定单侧可导;

其实这也是错误的; 我们讲: 连续不能推出可导, 就包括了 单侧连续也是并不能推出可导的;

记忆可导与连续的关系, 最好的例子是 y = x 1 3 y=x^{\frac{1}{3}} y=x31这个幂函数, 他 x = 0 x=0 x=0处是连续的, 但左右导数都是 ∞ \infty ;

性质

x 0 x_0 x0处的导数存在时 (即 D = lim ⁡ x → x 0 Δ y Δ x D = \lim_{x \to x_0} \frac{\Delta y}{\Delta x} D=limxx0ΔxΔy存在), 意味着: (1: 要么 Δ x , Δ y \Delta x, \Delta y Δx,Δy同阶无穷小, 此时 D ≠ 0 D \neq 0 D=0), (2: 要么 Δ y \Delta y Δy Δ x \Delta x Δx高阶无穷小, 此时 D = 0 D= 0 D=0);
. 也就是, 绝不会是低阶无穷小 (比如 x 1 / 3 x^{1/3} x1/3 0 0 0处 就是低阶无穷小) 此时 D = ∞ D = \infty D=;

@DELI;

#导数必须确定(基轴)#;

以2维坐标系为例, 空间上两个点 ( x 1 , y 1 ) ( x 2 , y 2 ) (x1,y1) (x2,y2) (x1,y1)(x2,y2), 求两者间割线的斜率:
1(如果以X轴为基轴): 该割线斜率为 ( y 1 − y 2 ) / ( x 1 − x 2 ) (y1-y2)/(x1-x2) (y1y2)/(x1x2);
1(如果以Y轴为基轴): 该割线斜率为 ( x 1 − x 2 ) / ( y 1 − y 2 ) (x1-x2)/(y1-y2) (x1x2)/(y1y2);

因此, 不同的基轴, 会得到不同的斜率;

@DELI;

#研究导数 必须将他放到坐标系里#;

不管是{函数,参数方程,隐式方程,…} 要研究其上某点的导数, 你必须研究 其在坐标系中的图像, 也就是 其图像上 某点的斜率 (需要确定基轴: X/Y轴);

@DELI;

求导数 d y / d x dy/dx dy/dx, 他的前提是: y是一个关于x函数 (即形如 y = f ( x ) y = f(x) y=f(x)); (假如x,y是两个独立的变量 没有关系, 那肯定不可以进行求导操作);
此时可以分2类情况:
. y = f(x), 则 d y / d x = d d x ( f ( x ) ) dy/dx = \frac{d}{dx} (f(x)) dy/dx=dxd(f(x)); (比如x^2 -> 2x, 3 -> 0);
. y = f(g(x)) (也就是复合函数求导), 记 u = g ( x ) u = g(x) u=g(x), 则 d y / d x = d f ( u ) d u ∗ d g ( x ) x dy/dx = \frac{d f(u)}{du} * \frac{d g(x)}{x} dy/dx=dudf(u)xdg(x);
. . 比如( d ( y 4 ) / d x = 4 y 3 ∗ ( d y / d x ) d(y^4)/dx = 4y^3 * (dy/dx) d(y4)/dx=4y3(dy/dx);

@DELIMITER

函数在 x 0 x_0 x0处可导    ⟹    \implies x 0 x_0 x0处连续;
. 但反之不然, 比如 ∣ x ∣ |x| x x = 0 x=0 x=0处是连续的 但没有导数, 因为左右导数都为常数 但不相等;

导函数

定义

条件: U ⊂ D f U \subset D_f UDf, 且 ∀ x ∈ D f , ( 函数 f ( x ) 在 x 处可导 )    ⟹    ( x ∈ U ) \forall x \in D_f, (函数f(x)在x处可导)\implies(x \in U) xDf,(函数f(x)x处可导)(xU), 构造函数 f ′ ( x ) = f ( x ) 在 x 处的导数 , ∀ x ∈ U f'(x) = f(x)在x处的导数, \forall x \in U f(x)=f(x)x处的导数,xU;
结论: f ′ ( x ) f'(x) f(x)称为函数 f ( x ) f(x) f(x)导函数 (也可记作 f ′ ( x ) = d y d x f'(x) = \frac{dy}{dx} f(x)=dxdy);

性质

#导函数的定义 是从依据函数在单点处的导数值 而来的, 而不是相反#
MARK: @LOC_1

不要认为: 函数在a点处的导数 怎么计算呢? 通过获取其导函数 f ′ ( x ) f'(x) f(x)在a点处的函数值即可;
这是错误的! 因为 你怎么获取导函数呢? 导函数的定义就是根据单点处的极限而来的! (这就是 递归死循环 无限套娃了)

错误

#函数F在 ( l , r ) (l,r) (l,r)上可导, 那么 f ′ ( x ) f'(x) f(x) ( l , r ) (l,r) (l,r)一定连续;#
错误;
参见@LINK: (https://editor.csdn.net/md/?articleId=131417635)-(@LOC_0);
比如 x 2 s i n ( 1 / x ) x^2 sin(1/x) x2sin(1/x), 他在 ( − 1 , 1 ) (-1, 1) (1,1)是可导的, 但他的导函数在 0 0 0处 并不连续;

但是反过来是正确的: 即函数 f ( x ) f(x) f(x) ( l , r ) (l,r) (l,r)上连续 那么他的原函数(反导数) F ( x ) = ∫ l x f ( x ) d x F(x) = \int_l^x f(x)dx F(x)=lxf(x)dx ( l , r ) (l,r) (l,r)是可导的;

@DELI;

#函数在a点可导, 则其导函数必然在a点连续#
MARK: @LOC_2;

这是错误的, 你研究导函数 必须得去研究单点处的导数, 但是反之不然 你要研究单点处的导数 不可以转而去研究导函数(这就本末倒置了), 参见LINK: @LOC_1;

举例: ∣ x 2 ∣ , x ∈ Q ; − ∣ x 2 ∣ , x ∈ Q c |x^2|, x \in Q; -|x^2|, x \in Q^c x2,xQ;x2,xQc 0 0 0处的导数为 0 0 0, 但对于任意 ≠ 0 \neq 0 =0处 都是不可导的;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值