数学 {柯西中值定理}

柯西中值定理是微积分中的一个重要定理,它与拉格朗日中值定理相似,但涉及两个函数f(x)和g(x),要求g(x)≠0。定理表明存在某点ξ,使得f(ξ)/g(ξ)等于(f(b)-f(a))/(g(b)-g(a))。证明过程中,通过将f(x)和g(x)转换为参数方程并利用拉格朗日中值定理,展示了h(x)=f(g^(-1)(x))满足连续可导,从而得出结论。此外,讨论了g(x)需满足的严格单调性条件。
摘要由CSDN通过智能技术生成

数学 {柯西中值定理}
@LOC: 1

柯西中值定理

定义

条件: 函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 同时满足: C [ a , b ] C[a, b] C[a,b]; D ( a , b ) D(a,b) D(a,b); g ′ ( x ) ≠ 0 , ∀ x ∈ ( a , b ) g'(x) \neq 0, \forall x \in (a,b) g(x)=0,x(a,b);
结论: ∃ ξ ∈ ( a , b ) , f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \exist \xi \in (a,b), \frac{f'(\xi)}{ g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)} ξ(a,b),g(ξ)f(ξ)=g(b)g(a)f(b)f(a);

@DELI;

#证明#
#证明#
拉格朗日中值定理很像, 假如你把条件里的 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)中的 x x x换成参数方程里的 t t t, 则 y = f ( t ) , x = g ( t ) , t ∈ [ a , b ] y=f(t), x=g(t), t \in [a,b] y=f(t),x=g(t),t[a,b]这个参数方程的图像 就是个函数图像 (因为 g ( t ) g(t) g(t)是在 [ g ( a ) , g ( b ) ] [ g(a), g(b)] [g(a),g(b)]上连续且严格单调函数);
我们写下其函数: h ( x ) = f ( g − 1 ( x ) ) , x ∈ [ g ( a ) , g ( b ) ] h(x) = f( g^{-1}(x)), x\in [g(a), g(b)] h(x)=f(g1(x)),x[g(a),g(b)], 你需要证明 h h h是满足连续可导的 (注意 f ( t ) f(t) f(t) C [ a , b ] , D ( a , b ) C[a,b], D(a,b) C[a,b],D(a,b), 可直接导出 h ( x ) h(x) h(x)是在 [ g ( a ) , g ( b ) ] [g(a),g(b)] [g(a),g(b)]也满足连续可导), 根据复合函数的 导数/连续性法则 可知 h ( x ) h(x) h(x)也满足连续可导;
因此 h ( x ) h(x) h(x)满足拉格朗日中值定理, ∃ ξ ∈ ( g ( a ) , g ( b ) ) , h ′ ( ξ ) = f ( g − 1 ( g ( b ) ) ) − f ( g − 1 ( g ( a ) ) ) g ( b ) − g ( a ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \exist \xi \in (g(a), g(b)), h'(\xi) = \frac{ f( g^{-1}( g(b))) - f( g^{-1}( g(a)))}{ g(b) - g(a)} = \frac{f(b) - f(a)}{ g(b) - g(a)} ξ(g(a),g(b)),h(ξ)=g(b)g(a)f(g1(g(b)))f(g1(g(a)))=g(b)g(a)f(b)f(a);
h ′ ( x ) = f ′ ( g − 1 ( x ) ) ∗ [ g − 1 ( x ) ] ′ h'(x) = f'(g^{-1}(x)) * [g^{-1}(x)]' h(x)=f(g1(x))[g1(x)], 记 t = g − 1 ( x ) t = g^{-1}(x) t=g1(x) 则有 d h / d x = ( d f / d t ) ∗ ( d t / d x ) = d f / d t d x / d t = f ′ g ′ dh/dx = (df/dt) * (dt/dx) = \frac{df/dt}{dx/dt} = \frac{f'}{g'} dh/dx=(df/dt)(dt/dx)=dx/dtdf/dt=gf;

性质

MKAR: @LOC_0;
对于 g ( x ) g(x) g(x), 其满足 C [ a , b ] , D ( a , b ) C[a,b], D(a,b) C[a,b],D(a,b), g ′ ( x ) ≠ 0 , ∀ x ∈ ( a , b ) g'(x) \neq 0, \forall x \in (a,b) g(x)=0,x(a,b), 这三个条件隐喻了: g g g [ a , b ] [a,b] [a,b]上是严格单调函数;
. 证明见LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=131662396)-(@LOC_0);
但反之不然; 比如 x 3 x^3 x3 [ − 1 , 1 ] [-1,1] [1,1]上是严格单调的, 但是在 0 0 0处导数为0; 再比如 x 1 / 3 x^{1/3} x1/3 [ − 1 , 1 ] [-1,1] [1,1]是严格单调的, 但在 0 0 0处不可导;

@DELI;

根据拉格朗日定理, f ( x ) : C [ a , b ] , D ( a , b ) f(x): C[a,b], D(a,b) f(x):C[a,b],D(a,b), 记 K = f ( b ) − f ( a ) b − a K = \frac{f(b)-f(a)}{b-a} K=baf(b)f(a), 则存在 ξ ∈ ( a , b ) , f ′ ( ξ ) = K \xi \in (a,b), f'(\xi) = K ξ(a,b),f(ξ)=K;
我们将该函数 写成参数方程的形式, 即 x = g ( t ) = t , y = h ( t ) , t ∈ [ a , b ] x = g(t)=t, y = h(t), t\in[a, b] x=g(t)=t,y=h(t),t[a,b] (注意, 函数 f ( x ) f(x) f(x)和该参数方程 其实是完全等价的, 从几何角度看 都是定义域为 x ∈ [ a , b ] x \in [a,b] x[a,b]上的一段曲线, 只是表达方式不同而已);
原来的 a , b a,b a,b 等价于现在的 g ( a ) , g ( b ) g(a),g(b) g(a),g(b), 原来的 f ( a ) , f ( b ) f(a),f(b) f(a),f(b) 等价于 现在的 h ( a ) , h ( b ) h(a), h(b) h(a),h(b), 因此 K K K可以写成 h ( b ) − h ( a ) g ( b ) − g ( a ) \frac{ h(b) - h(a)}{ g(b) - g(a)} g(b)g(a)h(b)h(a);
原来的 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b), 由于定义域不变 同样可以写成 t = ξ ∈ ( a , b ) t = \xi \in (a,b) t=ξ(a,b), 而参数方程的导数 即 d y / d x = h ′ ( t ) / g ′ ( t ) dy / dx = h'(t) / g'(t) dy/dx=h(t)/g(t),

故, 原来的 f ′ ( ξ ) = K f'(\xi) = K f(ξ)=K 等价于 现在的 h ′ ( ξ ) g ′ ( ξ ) = h ( b ) − h ( a ) g ( b ) − g ( a ) \frac{h'(\xi)}{ g'(\xi)} = \frac{h(b) - h(a)}{g(b) - g(a)} g(ξ)h(ξ)=g(b)g(a)h(b)h(a);

@DELI;

条件里说 g ( x ) : C [ a , b ] , D ( a , b ) , ∀ x ∈ ( a , b ) [ g ′ ( x ) ≠ 0 ] g(x): C[a,b], D(a,b), \forall x \in (a,b) [g'(x) \neq 0] g(x):C[a,b],D(a,b),x(a,b)[g(x)=0], 结论中涉及到2个分母 即 g ′ ( ξ ) , g ( b ) − g ( a ) g'(\xi), g(b)-g(a) g(ξ),g(b)g(a) 我们当然要保证他俩不为0;
. 对于 g ′ ( ξ ) g'(\xi) g(ξ), 条件里已经保证了他不会是0;
. 对于 g ( b ) − g ( a ) g(b)-g(a) g(b)g(a), 根据LINK: @LOC_0, g ( x ) g(x) g(x)是严格单调的 因此他也不会是0;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值