柯西中值定理
若函数 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)满足
- 在闭区间 [ a , b ] [a,b] [a,b]连续
- 在开区间 ( a , b ) (a,b) (a,b)可导
- g ′ ( x ) ≠ 0 g'(x)\neq 0 g′(x)=0
则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ)
例题
设函数
f
(
x
)
f(x)
f(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导
(
0
<
a
<
b
)
(0<a<b)
(0<a<b),
求证:存在
ξ
∈
(
a
,
b
)
\xi\in(a,b)
ξ∈(a,b),使得
f
(
b
)
−
f
(
a
)
=
ξ
ln
b
a
f
′
(
ξ
)
f(b)-f(a)=\xi\ln\dfrac ba f'(\xi)
f(b)−f(a)=ξlnabf′(ξ)。
解:
\qquad
令
g
(
x
)
=
ln
x
g(x)=\ln x
g(x)=lnx
∵ f ( x ) , g ( x ) \qquad \because f(x),g(x) ∵f(x),g(x)在 [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导
∴ \qquad \therefore ∴由柯西中值定理得: ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ∃ξ∈(a,b),使得
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \qquad \qquad \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)−f(a)=g′(ξ)f′(ξ),即 f ( b ) − f ( a ) ln b − ln a = f ′ ( ξ ) 1 ξ = ξ f ′ ( ξ ) \dfrac{f(b)-f(a)}{\ln b-\ln a}=\dfrac{f'(\xi)}{\frac1\xi}=\xi f'(\xi) lnb−lnaf(b)−f(a)=ξ1f′(ξ)=ξf′(ξ)
\qquad 得证 f ( b ) − f ( a ) = ξ ln b a f ′ ( ξ ) f(b)-f(a)=\xi\ln\dfrac ba f'(\xi) f(b)−f(a)=ξlnabf′(ξ)
总结
构造 g ( x ) g(x) g(x),通过 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)用柯西中值定理解题
4万+

被折叠的 条评论
为什么被折叠?



