微分中值定理之柯西中值定理

柯西中值定理

若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足

  • 在闭区间 [ a , b ] [a,b] [a,b]连续
  • 在开区间 ( a , b ) (a,b) (a,b)可导
  • g ′ ( x ) ≠ 0 g'(x)\neq 0 g(x)=0

则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

例题

设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导 ( 0 < a < b ) (0<a<b) (0<a<b)
求证:存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ(a,b),使得 f ( b ) − f ( a ) = ξ ln ⁡ b a f ′ ( ξ ) f(b)-f(a)=\xi\ln\dfrac ba f'(\xi) f(b)f(a)=ξlnabf(ξ)

解:
\qquad g ( x ) = ln ⁡ x g(x)=\ln x g(x)=lnx

∵ f ( x ) , g ( x ) \qquad \because f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导

∴ \qquad \therefore 由柯西中值定理得: ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ξ(a,b),使得

f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \qquad \qquad \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ),即 f ( b ) − f ( a ) ln ⁡ b − ln ⁡ a = f ′ ( ξ ) 1 ξ = ξ f ′ ( ξ ) \dfrac{f(b)-f(a)}{\ln b-\ln a}=\dfrac{f'(\xi)}{\frac1\xi}=\xi f'(\xi) lnblnaf(b)f(a)=ξ1f(ξ)=ξf(ξ)

\qquad 得证 f ( b ) − f ( a ) = ξ ln ⁡ b a f ′ ( ξ ) f(b)-f(a)=\xi\ln\dfrac ba f'(\xi) f(b)f(a)=ξlnabf(ξ)


总结

构造 g ( x ) g(x) g(x),通过 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)用柯西中值定理解题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值