柯西中值定理
若函数 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)满足
- 在闭区间 [ a , b ] [a,b] [a,b]连续
- 在开区间 ( a , b ) (a,b) (a,b)可导
- g ′ ( x ) ≠ 0 g'(x)\neq 0 g′(x)=0
则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(\xi)}{g'(\xi)} g(b)−g(a)f(b)