3.1 微分中值定理

本篇内容为三种微分中值定理。

引子

上个图
在这里插入图片描述
如图所示,x1为f(x)的极小值点,x2为f(x)的极大值点
对于x=x1,存在δ1>0,当0<|x-x1|<δ1时,f(x)>f(x1)
对于x=x2,存在δ2>0,当0<|x-x2|<δ2时,f(x)<f(x2)

函数在一个点的导数的可能性

  1. f’(x0)>0
  2. f’(x0)<0
  3. f’(x0)=0
  4. f’(x0)不存在,即f(x)在x=x0处不可导

根据导数定义有如下推论
在这里插入图片描述
因此,f(x)极值点的导数的情况只有两种:
f’(x0)=0
f’(x0)不存在,即f(x)在x=x0处不可导
结论
f(x)在x=a处取极值,则 f’(a)=0或 f’(a)不存在
f(x)在x=a处取极值且可导,则 f’(a)=0

关于结论命题关系的讨论
f(x)在x=a处取极值f'(x<sub>0</sub>)=0或 f'(a)不存在的充分不必要条件,正推可以,反推不对,也就是说, f’(a)=0或 f’(a)不存在不能得到f(x)在x=a处取到极值点
例1 y=x3,求导y’=3x2,y’(0)=0,但是,看图吧
在这里插入图片描述
例2 分段函数f(x)=x (x<0);f(x)=2x (x>0),如图在这里插入图片描述
f(0)处左导数为1,右导数为2,虽然f(x)在x=0处不可导,但是f(0)不是极值点啊

补充
以上两个例题的图像为例,做一下说明,根据图1和图2可以看出,例1和例2两个函数在函数的连续性上是相同的,二者均连续,但是在函数的可导性上二者不同,例1处处可导,例2在x=0处不可导。从图像上来看,有尖锐点的函数不是处处可导的,平滑的图像是可导的。、
吟诗一首,小荷才露尖尖角,所以小荷不可导

以上是微分中值定理的引子,也是预备知识,下面开始正文。

微分中值定理

本篇的三种中值定理都有两个共同的条件

  1. 闭区间连续,即f(x)∈c[a,b]
  2. 开区间可导,即f(x)在(a,b)上可导

罗尔定理

定理
满足以下条件,

  1. 闭区间连续,即f(x)∈c[a,b]
  2. 开区间可导,即f(x)在(a,b)上可导
  3. f(a)=f(b)

则有结论
存在c∈(a,b),使f’(c)=0

证明在这里插入图片描述

例题

例1 f(x)∈c[0,2],(0,2)内可导,f(0)=-1,f(1)=2,f(2)=-2
证明存在α∈(0,2)使f’(α)=0
在这里插入图片描述

例2 f(x)∈c[0,2],f(x)在(0,2)内可导,且f(0)=1,f(1)+2f(2)=3
证明存在α∈(0,2)使f’(α)=0
在这里插入图片描述

拉格朗日中值定理

定理
满足以下条件,

  1. 闭区间连续,即f(x)∈c[a,b]
  2. 开区间可导,即f(x)在(a,b)上可导

则有结论
存在c∈(a,b),使f’(c)=[f(b)-f(a)]/b-a,也就是说如果函数闭区间连续,开区间可导,则至少有一个点的导数与过a,b点的直线的斜率相等
几何解释
如果函数闭区间连续,开区间可导,则至少有一个点,过该点做切线,与过a,b两点的直线平行


证明 画个图
在这里插入图片描述
依图可知,f(x)在[a,b]上连续,那么过a,b两点的线有几条呢?两条
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注解:

  • 当拉格朗日中值定理满足f(a)=f(b)时,那么拉格朗日中值定理就变成了罗尔中值定理
  • 等价形式
    • f(b)-f(a)=f’(c)(b-a) (a<c<b)
    • f(b)-f(a)=f’[a+θ(b-a)] (b-a) (0<θ<1)
      在这里插入图片描述

例题

例1 f(x)∈c[a,b],(a,b)内可导,f(a)=0,f(b)=0,a<c<b,且|f’(x)|<M
证明|f’(c)|<=(M/2)(b-a)
在这里插入图片描述
提示题目中出现了a,c,b三个点,一般就使用两次拉格朗日中值定理

例2 设a<b
证明arctan b-arctan a <= b-a
在这里插入图片描述

推论
若f(x)∈c[a,b],f(x)在(a,b)上可导且f’(x)≡0,则f(x)≡C0
证明
在这里插入图片描述

柯西中值定理

定理
柯西中值定理涉及两个函数
满足以下条件,

  1. 闭区间连续,即f(x),g(x)∈c[a,b]
  2. 开区间可导,即f(x),gf(x)在(a,b)上可导
  3. g’(x)≠0 (a<x<b)

则有结论
**存在c∈(a,b),使f'(c)=[f(b)-f(a)]/b-a,也就是说如果函数闭区间连续,开区间可导,则至少有一个点的导数与过a,b点的直线的斜率相等**

注解:条件3的作用
1.保证结论的等号右边分母不为0
2.保证g(b)-g(a)≠0,若g(b)-g(a)=0,则g(b)=g(a),根据罗尔定理存在c∈(a,b)使g’©=0,矛盾
3若g(x=x则柯西中值定理就变为拉格朗日中值定理
在这里插入图片描述

例题

例1 f(x)∈c[a,b],(a,b)内可导 (a>0)
证明:存在c∈(a,b)使f(b)-f(a)=cf’(c)ln(b/a)
在这里插入图片描述

总结

本篇内容为微分中值定理,要点如下

  1. 微分中值定理的通用条件
    • 函数闭区间内连续
    • 函数开区间内可导
  2. 三个定理的区别
    • 罗尔中值定理要求两个值相等 f(a)=f(b)
    • 拉格朗日中值定理没有额外条件
    • 柯西中值定理涉及两个函数,要求分母不为0
  3. 三个定理的关系
    三个定理是特殊与一般的关系
    在这里插入图片描述
    图示在这里插入图片描述
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值