目录
我们先使用柯西中值定理举一个例子
我们引入洛必达法则:
洛必达法则
三个条件:极限值为0,可导,比值的导数存在。
得出的结论:比值的极限等于比值导数的极限。
我们进行证明:
例题:
这个极限是0比0的形式,我们可以考虑使用洛必达,我们需要考虑是否满足洛必达法则:
对于洛必达法则的前两条我们不需要判定,我们只需要判定第三条即可
极限值存在或者极限值为无穷大。
极限结构为0/0
我们先进行化简:
无穷比无穷洛必达法则的应用
对于无穷比无穷,我们也可以使用洛必达法则:
例如:
得出的结论:
当对数函数,幂函数,指数函数的自变量全部趋向于无穷时,谁趋向于无穷的速度更快呢?
答:指数函数大于幂函数大于对数函数
遇到这类无穷减去无穷的问题,我们可以先通分
无穷减无穷的处理方法:先同分,再使用等价无穷小化简,最后使用洛必达法则。
这种形式是0的0次方:
遇到这类问题,我们主要用e来进行解决:
对于0的0次方的问题,首先使用指数函数e来进行代换,转换为0乘无穷的问题,然后判断求导是否复杂,复杂时使用等价代换,之后使用洛必达法则。
这里是1的无穷大次方:
对于1的无穷大次方,我们也转换成e的指数函数的形式,使用洛必达法则求极限。
洛必达法则的使用条件:
导数的极限存在或者导数的极限等于无穷大
例如: