【最大正方形】

题目描述

在一个 n × m n\times m n×m 的只包含 0 0 0 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。

输入格式

输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1n,m100),接下来 n n n 行,每行 m m m 个数字,用空格隔开, 0 0 0 1 1 1

输出格式

一个整数,最大正方形的边长。

样例 #1

样例输入 #1

4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1

样例输出 #1

2

代码如下:

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> matrix(n, vector<int>(m)); // 初始化二维数组
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            cin >> matrix[i][j];
        }
    }
    // dp[i][j]表示以matrix[i][j]为右下角的正方形的最大边长
    vector<vector<int>> dp(n, vector<int>(m, 0)); 
    int maxLen = 0;
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            if (i == 0 || j == 0 || matrix[i][j] == 0) { // 边界条件,如果是第一行或者第一列,或者matrix[i][j] == 0,说明以当前位置为右下角不可能构成正方形
                dp[i][j] = matrix[i][j]; 
            }
            else {
                // 以matrix[i][j]为右下角的正方形的最大边长取决于左边、上边、左上边的正方形的最大边长,
                // 为什么取最小值,因为只有三个边都是1,才能构成一个正方形
                dp[i][j] = min(dp[i - 1][j - 1], min(dp[i][j - 1], dp[i - 1][j])) + 1; 
            }
            maxLen = max(maxLen, dp[i][j]); // 更新最大边长
        }
    }
    cout << maxLen << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武帝为此

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值