Description
A 国正在开展一项伟大的计划 —— 国旗计划。这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈。这项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了 NN 名优秀的边防战士作为这项计划的候选人。
A 国幅员辽阔,边境线上设有 MM 个边防站,顺时针编号 11 至 MM。每名边防战士常驻两个边防站,并且善于在这两个边防站之间长途奔袭,我们称这两个边防站之间的路程是这个边防战士的奔袭区间。NN 名边防战士都是精心挑选的,身体素质极佳,所以每名边防战士的奔袭区间都不会被其他边防战士的奔袭区间所包含。
现在,国土安全局局长希望知道,至少需要多少名边防战士,才能使得他们的奔袭区间覆盖全部的边境线,从而顺利地完成国旗计划。不仅如此,安全局局长还希望知道更详细的信息:对于每一名边防战士,在他必须参加国旗计划的前提下,至少需要多少名边防战士才能覆盖全部边境线,从而顺利地完成国旗计划。
Input
第一行,包含两个正整数 N,MN,M,分别表示边防战士数量和边防站数量。
随后 NN 行,每行包含两个正整数。其中第 ii 行包含的两个正整数 CiCi、DiDi 分别表示 ii 号边防战士常驻的两个边防站编号,CiCi 号边防站沿顺时针方向至 DiDi 号边防站力他的奔袭区间。数据保证整个边境线都是可被覆盖的。
Output
输出数据仅 11 行,需要包含 NN 个正整数。其中,第 jj 个正整数表示 jj 号边防战士必须参加的前提下至少需要多少名边防战士才能顺利地完成国旗计划。
Sample 1
Inputcopy | Outputcopy |
---|---|
4 8 2 5 4 7 6 1 7 3 | 3 3 4 3 |
Hint
N⩽2×105,M<109,1⩽Ci,Di⩽MN⩽2×105,M<109,1⩽Ci,Di⩽M。
首先,题目中给的是一个环,但为了方便处理可以将它变成线,采取的方式是如果右边𝐷𝑖小于左边𝐶𝑖,则将右边𝐷𝑖数值加上𝑀,拆开后为了保持之前的首尾关系,就需要把原来的复制再相接,先将这些区间都按左端点进行排序,当选择一个区间𝑖后,下一个区间只能从左端点小于或等于𝑖的右端点的那些区间中选择,选择右端点最大的那一个,这里是贪心算法的思想,但光是这样,时间复杂度为O(),想要效率更高,可以采用倍增法,找出一些“跳板”,go[s][i]示从第s个区间出发,走个最优区间后到达的区间,
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define re register int
#define rl register ll
int read() {
re x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9') {
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9') {
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
return x*f;
}
inline void write(const int x) {
if(x>9) write(x/10);
putchar(x%10+'0');
}
const int Size=400005;
int n,m;
struct Segment {
int l,r,id;
} w[Size];
inline bool comp(Segment x,Segment y) {
if(x.l!=y.l) return x.l<y.l;
return x.r<y.r;
}
int jmp[Size][21];
int Query(int x) {
int ans=0,r=w[x].l+n;
for(re i=20; i>=0; i--) {
if(w[jmp[x][i]].r<r) {
x=jmp[x][i];
ans|=1<<i;
}
}
return ans+2;
}
int ans[Size];
int main() {
w[0].l=2e9;
m=read();
n=read();
for(re i=1; i<=m; i++) {
w[i].l=read();
w[i].r=read();
w[i].id=i;
if(w[i].l>w[i].r) {
w[i].r+=n;
}
int id=i+m;
w[id].l=w[i].l+n;
w[id].r=w[i].r+n;
w[id].id=id;
}
int maxm=m<<1,ptr=1;
sort(w+1,w+1+maxm,comp);
for(re i=1; i<=maxm; i++) {
while(ptr<maxm && w[ptr+1].l<=w[i].r) ptr++;
jmp[i][0]=ptr;
}
for(re j=1; j<=20; j++) {
for(re i=1; i<=maxm; i++) {
jmp[i][j]=jmp[jmp[i][j-1]][j-1];
}
}
for(re i=1; i<=maxm; i++) {
if(w[i].id<=m) {
ans[w[i].id]=Query(i);
}
}
for(re i=1; i<=m; i++) {
write(ans[i]);
putchar(' ');
}
return 0;
}