信度分析案例数据下载+说明

信度分析

信度分析概述

信度分析用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。重要提示:信度分析仅仅是针对量表数据,非量表数据一般不进行信度分析;信度分析仅针对定量数据。

  • 克隆巴赫信度系数(Cronbach α系数值)
    • 0.8以上:信度非常好
    • 0.7以上:可以接受
    • 0.6以上:量表应进行修订,但仍不失其价值
    • 低于0.6:量表需要重新设计题项

关键指标

  • 校正的项总计相关性(CITC):用于判断题项是否应该作删除处理,如果值小于0.3,通常应考虑将对应项删除。
  • 项已删除的Alpha值:用于判断题项是否应该作删除处理,如果该值明显高于α系数值,应考虑将对应项删除。

分析步骤与解读

分析步骤

  1. 确定分析维度:以维度为单位进行分析。
  2. 进行信度分析:使用SPSSAU等工具进行信度分析。
  3. 整理结果:将各维度的信度分析结果整理汇总。

结果解读

  • 如果是正式数据分析,通常只关注整体α系数值。
  • 如果整体α系数值大于0.6,则说明信度达标。
  • 如果个别α系数值小于0.6但高于0.5,综合整体情况说明信度可接受。

注意事项

  • 在预测试中,可能会使用到CITC和项已删除的α系数两个指标来辅助判断量表题目是否应修正。
  • 如果有反向题,需要先进行反向操作后再进行分析。
  • 如果某个维度仅对应1个题项,则无法进行信度分析。
  • 非量表数据不能进行信度分析,只能使用文字描述来证明数据质量。

信度不达标解决方案

  • 检查是否有异常值,并进行处理。
  • 确保分析的是量表数据。
  • 考虑把所有量表题合并在一起进行一次信度分析。
  • 删除不合理的项,留下有意义的项。
  • 加大样本量。
  • 问卷设计时,一个维度尽量4~7个题较好。

其他说明

  • 标准化Cronbach α系数值与Cronbach α系数值的功能一样,判断标准也完全一样,一般直接使用Cronbach α系数值进行分析。
  • 如果在信度分析(或其他分析)时认为某个分析项不合理需要删除,后续分析方法中一般也需要同步一致,即在分析时直接不分析该项。
  • SPSSAU还提供McDonald’s omega信度系数,其解读与Cronbach系数基本一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值