信度分析
信度分析概述
信度分析用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。重要提示:信度分析仅仅是针对量表数据,非量表数据一般不进行信度分析;信度分析仅针对定量数据。
- 克隆巴赫信度系数(Cronbach α系数值):
- 0.8以上:信度非常好
- 0.7以上:可以接受
- 0.6以上:量表应进行修订,但仍不失其价值
- 低于0.6:量表需要重新设计题项
关键指标
- 校正的项总计相关性(CITC):用于判断题项是否应该作删除处理,如果值小于0.3,通常应考虑将对应项删除。
- 项已删除的Alpha值:用于判断题项是否应该作删除处理,如果该值明显高于α系数值,应考虑将对应项删除。
分析步骤与解读
分析步骤
- 确定分析维度:以维度为单位进行分析。
- 进行信度分析:使用SPSSAU等工具进行信度分析。
- 整理结果:将各维度的信度分析结果整理汇总。
结果解读
- 如果是正式数据分析,通常只关注整体α系数值。
- 如果整体α系数值大于0.6,则说明信度达标。
- 如果个别α系数值小于0.6但高于0.5,综合整体情况说明信度可接受。
注意事项
- 在预测试中,可能会使用到CITC和项已删除的α系数两个指标来辅助判断量表题目是否应修正。
- 如果有反向题,需要先进行反向操作后再进行分析。
- 如果某个维度仅对应1个题项,则无法进行信度分析。
- 非量表数据不能进行信度分析,只能使用文字描述来证明数据质量。
信度不达标解决方案
- 检查是否有异常值,并进行处理。
- 确保分析的是量表数据。
- 考虑把所有量表题合并在一起进行一次信度分析。
- 删除不合理的项,留下有意义的项。
- 加大样本量。
- 问卷设计时,一个维度尽量4~7个题较好。
其他说明
- 标准化Cronbach α系数值与Cronbach α系数值的功能一样,判断标准也完全一样,一般直接使用Cronbach α系数值进行分析。
- 如果在信度分析(或其他分析)时认为某个分析项不合理需要删除,后续分析方法中一般也需要同步一致,即在分析时直接不分析该项。
- SPSSAU还提供McDonald’s omega信度系数,其解读与Cronbach系数基本一致。