白话机器学习笔记(二)学习分类

image-20230719111307639

分类用图形来解释,把他想象为有大小有方向带箭头的向量。

设权重向量为 w w w,虚线为使权重向量称为法线向量的直线。

直线的表达式为: w ⋅ x = 0 w\cdot x=0 wx=0 (两个向量的内积)

也可写为: w ⋅ x = ∑ i = 1 n w i x i = w 1 x 1 + w 2 x 2 = 0 w\cdot x=\sum\limits_{i=1}^nw_ix_i=w_1x_1+w_2x_2=0 wx=i=1nwixi=w1x1+w2x2=0

w ⋅ x = ∣ w ∣ ⋅ ∣ x ∣ ⋅ c o s θ w\cdot x=|w|\cdot|x|\cdot cos\theta wx=wxcosθ 要使内积0, θ = 90 ° \theta=90\degree θ=90° θ = 270 ° \theta=270\degree θ=270°

感知机

感知机是接受多个输入后将每个值与各自的权重相乘,最后输出总和的模型。是神经网络和深度学习的基础模型。人们常用这样的图来表示它。

image-20230719114303128

训练数据的准备

image-20230719114444309

f w ( x ) f_w(x) fw(x):根据参数向量 x x x来判断图像是横向还是纵向的函数,即返回1或者-1的函数,这个函数被称为判别函数。

f w ( x ) = { 1 ( w ⋅ x ≥ 0 ) − 1 ( w ⋅ x < 0 ) f_w(x)= \begin{cases} 1& {(w\cdot x\ge0)}\\ -1&{(w\cdot x<0)} \end{cases} fw(x)={11(wx0)(wx<0)

根据内积正负来分割区域

权重向量的更新表达式

w : = { w + y ( i ) x ( i ) ( f w ( x ( i ) ) ≠ y ( i ) ) w ( f w ( x ( i ) ) = y ( i ) ) w:= \begin{cases}w+y^{(i)}x^{(i)}&(f_w(x^{(i)})\not=y^{(i)})\\w&(f_w(x^{(i)})=y^{(i)}) \end{cases} w:={w+y(i)x(i)w(fw(x(i))=y(i))(fw(x(i))=y(i))

分类正确不动,分类失败更新权重向量, y ( i ) y^{(i)} y(i)为1或-1,做向量的加法和减法去旋转直线。

线性可分

感知机只能解决线性可分问题

无法解决下图情况

image-20230719121624546

之前提到的感知机也被称为简单感知机或单层感知机,实际上多层感知机就是神经网络。

逻辑回归

sigmoid函数

f θ ( x ) = 1 1 + e x p ( − θ T x ) f_\theta(x)=\frac{1}{1+exp(-\theta^Tx)} fθ(x)=1+exp(θTx)1 ( e x p ( x ) = e x exp(x)=e^x exp(x)=ex)

图形如下:

image-20230719122033385

θ T x = 0 \theta^Tx=0 θTx=0 f θ ( x ) = 0.5 f_\theta(x)=0.5 fθ(x)=0.5 0 < f θ ( x ) < 1 0<f_\theta(x)<1 0<fθ(x)<1是sigmoid函数的两个特征。

决策边界

把位置数据 x x x是横向图像的概率作为 f θ ( x ) f_\theta(x) fθ(x),表达式如下

P ( y = 1 ∣ x ) = f θ ( x ) P(y=1|x)=f_\theta(x) P(y=1∣x)=fθ(x)

这是在给出 x x x的数据时 y = 1 y=1 y=1,即图像为横向的概率。

y = { 1 ( f θ ( x ) ≥ 0.5 ) 0 ( f θ ( x ) < 0.5 ) y=\begin{cases}1&(f_\theta(x)\ge0.5)\\0&(f_\theta(x)<0.5) \end{cases} y={10(fθ(x)0.5)(fθ(x)<0.5)

可以改写为:

y = { 1 ( θ T x ≥ 0 ) 0 ( θ T x < 0 ) y=\begin{cases}1&(\boldsymbol{\theta}^T\boldsymbol{x}\ge0)\\0&(\boldsymbol{\theta}^T\boldsymbol{x}<0)\end{cases} y={10(θTx0)(θTx<0)

image-20230719124539740

image-20230719124550170

我们将 θ T x = 0 \boldsymbol{\theta}^T\boldsymbol{x}=0 θTx=0这条直线作为边界线,把数据分类为横向和纵向,这种用于数据分类的直线称为决策边界

为了求正确的参数 θ \theta θ而定义目标函数,进行微分,然后求参数的更新表达式。这种算法就称为逻辑回归

似然函数

开始求参数的更新表达式。

P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x)是图像为横向的概率, P ( y = 0 ∣ x ) P(y=0|x) P(y=0∣x)是图像为纵向的概率。

我们期待的概率是这样的

image-20230719125101271

假定所有的训练数据都是互不影响、独立发生的,这种情况下整体的概率就可以用下面的联合概率来表示。

L ( θ ) = P ( y ( 1 ) = 0 ∣ x ( 1 ) ) P ( y ( 2 ) = 0 ∣ x ( 2 ) ) ⋯ P ( y ( 6 ) = 1 ∣ x ( 6 ) ) L(\theta)=P(y^{(1)}=0|x^{(1)})P(y^{(2)}=0|x^{(2)})\cdots P(y^{(6)}=1|x^{(6)}) L(θ)=P(y(1)=0∣x(1))P(y(2)=0∣x(2))P(y(6)=1∣x(6))

将其一般化,写法如下:

L ( θ ) = ∏ i = 1 n P ( y ( i ) = 1 ∣ x ( i ) ) y ( i ) P ( y ( i ) = 0 ∣ x ( i ) ) 1 − y ( i ) L(\theta)=\prod\limits_{i=1}^nP(y^{(i)}=1|x^{(i)})^{y^{(i)}}P(y^{(i)}=0|x^{(i)})^{1-y^{(i)}} L(θ)=i=1nP(y(i)=1∣x(i))y(i)P(y(i)=0∣x(i))1y(i)

考虑使目标函数最大化的参数 θ \theta θ,可以认为似然函数 L ( θ ) L(\theta) L(θ)中,使其值最大的参数 θ \theta θ能够最近似地说明训练数据。

对数似然函数

取似然函数的对数

l o g L ( θ ) = l o g ∏ i = 1 n P ( y ( i ) = 1 ∣ x ( i ) ) y ( i ) P ( y ( i ) = 0 ∣ x ( i ) ) 1 − y ( i ) logL(\theta)=log\prod\limits_{i=1}^nP(y^{(i)}=1|x^{(i)})^{y^{(i)}}P(y^{(i)}=0|x^{(i)})^{1-y^{(i)}} logL(θ)=logi=1nP(y(i)=1∣x(i))y(i)P(y(i)=0∣x(i))1y(i)

log是单调递增函数,如图

image-20230719155041679

L ( θ ) L(\theta) L(θ)最大化等价于 l o g L ( θ ) logL(\theta) logL(θ)最大化

l o g L ( θ ) = l o g ∏ i = 1 n P ( y ( i ) = 1 ∣ x ( i ) ) y ( i ) P ( y ( i ) = 0 ∣ x ( i ) ) 1 − y ( i ) logL(\theta)=log\prod\limits_{i=1}^nP(y^{(i)}=1|x^{(i)})^{y^{(i)}}P(y^{(i)}=0|x^{(i)})^{1-y^{(i)}} logL(θ)=logi=1nP(y(i)=1∣x(i))y(i)P(y(i)=0∣x(i))1y(i)函数变形如下
l o g L ( θ ) = l o g ∏ i = 1 n P ( y ( i ) = 1 ∣ x ( i ) ) y ( i ) P ( y ( i ) = 0 ∣ x ( i ) ) 1 − y ( i ) = ∑ i = 1 n ( l o g P ( y ( i ) = 1 ∣ x ( i ) ) y ( i ) + l o g P ( y ( i ) = 0 ∣ x ( i ) ) 1 − y ( i ) ) = ∑ i = 1 n ( y ( i ) l o g P ( y ( i ) = 1 ∣ x ( i ) ) + ( 1 − y ( i ) ) l o g P ( y ( i ) = 0 ∣ x ( i ) ) ) = ∑ i = 1 n ( y ( i ) l o g P ( y ( i ) = 1 ∣ x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − P ( y ( i ) = 1 ∣ x ( i ) ) ) ) = ∑ i = 1 n ( y ( i ) l o g f θ ( x i ) + ( 1 − y ( i ) ) l o g ( 1 − f θ ( x ( i ) ) ) ) \begin{aligned} logL(\theta)&=log\prod\limits_{i=1}^nP(y^{(i)}=1|x^{(i)})^{y^{(i)}}P(y^{(i)}=0|x^{(i)})^{1-y^{(i)}}\\&= \sum\limits_{i=1}^n(logP(y^{(i)}=1|x^{(i)})^{y^{(i)}}+logP(y^{(i)}=0|x^{(i)})^{1-y^{(i)}})\\&= \sum\limits_{i=1}^n(y^{(i)}logP(y^{(i)}=1|x^{(i)})+({1-y^{(i)}})logP(y^{(i)}=0|x^{(i)}))\\&= \sum\limits_{i=1}^n(y^{(i)}logP(y^{(i)}=1|x^{(i)})+({1-y^{(i)}})log(1-P(y^{(i)}=1|x^{(i)})))\\&= \sum\limits_{i=1}^n(y^{(i)}logf_\theta(x^{i}) +({1-y^{(i)}})log(1-f_\theta(x^{(i)}))) \end{aligned} logL(θ)=logi=1nP(y(i)=1∣x(i))y(i)P(y(i)=0∣x(i))1y(i)=i=1n(logP(y(i)=1∣x(i))y(i)+logP(y(i)=0∣x(i))1y(i))=i=1n(y(i)logP(y(i)=1∣x(i))+(1y(i))logP(y(i)=0∣x(i)))=i=1n(y(i)logP(y(i)=1∣x(i))+(1y(i))log(1P(y(i)=1∣x(i))))=i=1n(y(i)logfθ(xi)+(1y(i))log(1fθ(x(i))))
接下来对各个参数 θ j \theta_j θj求微分
∂ l o g L ( θ ) ∂ θ j = ∂ ∂ θ j ∑ i = 1 n ( y ( i ) l o g P ( y ( i ) = 1 ∣ x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − f θ ( x ( i ) ) ) ) \begin{aligned} \frac{\partial logL(\theta)}{\partial\theta_j}&= \frac{\partial}{\partial\theta_j}\sum\limits_{i=1}^n(y^{(i)}logP(y^{(i)}=1|x^{(i)})+({1-y^{(i)}})log(1-f_\theta(x^{(i)}))) \end{aligned} θjlogL(θ)=θji=1n(y(i)logP(y(i)=1∣x(i))+(1y(i))log(1fθ(x(i))))
f θ ( x ) = 1 1 + e x p ( − θ T x ) f_\theta(x)=\frac{1}{1+exp(-\theta^Tx)} fθ(x)=1+exp(θTx)1

过程省略得
∂ l o g L ( θ ) ∂ θ j = ∑ i = 1 n ( y ( i ) − f θ ( x ( i ) ) ) x j ( i ) \frac{\partial logL(\theta)}{\partial\theta_j}= \sum\limits_{i=1}^n(y^{(i)}-f_\theta(x^{(i)}))x_j^{(i)} θjlogL(θ)=i=1n(y(i)fθ(x(i)))xj(i)
最大化为目标,与微分结果符号相同得方向移动,更新表达式如下
θ j : = θ j + η ∑ i = 1 n ( y ( i ) − f θ ( x ( i ) ) ) x j ( i ) \theta_j:=\theta_j+\eta\sum\limits_{i=1}^n(y^{(i)}-f_\theta(x^{(i)}))x_j^{(i)} θj:=θj+ηi=1n(y(i)fθ(x(i)))xj(i)
也可以调整为下面这样
θ j : = θ j − η ∑ i = 1 n ( f θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j:=\theta_j-\eta\sum\limits_{i=1}^n(f_\theta(x^{(i)})-y^{(i)})x_j^{(i)} θj:=θjηi=1n(fθ(x(i))y(i))xj(i)

线性不可分

将逻辑回归应用于线性不可分问题

image-20230719164128363

不能用直接分类,但是用曲线可以分类

向训练数据中加入 x 1 2 x_1^2 x12
θ = [ θ 0 θ 1 θ 2 θ 3 ] , x = [ 1 x 1 x 2 x 1 2 ] \boldsymbol{\theta}= \begin{bmatrix} \theta_0\\\theta_1\\\theta_2\\\theta_3 \end{bmatrix} , \boldsymbol{x}= \begin{bmatrix} 1\\x_1\\x_2\\x_1^2 \end{bmatrix} θ= θ0θ1θ2θ3 ,x= 1x1x2x12

θ T x = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 2 \boldsymbol{\theta}^T\boldsymbol{x}= \theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2 θTx=θ0+θ1x1+θ2x2+θ3x12


θ = [ θ 0 θ 1 θ 2 θ 3 ] = [ 0 0 1 − 1 ] \boldsymbol{\theta}= \begin{bmatrix}\theta_0\\\theta_1\\\theta_2\\\theta_3\end{bmatrix}= \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} θ= θ0θ1θ2θ3 = 0011
θ T x = x 2 − x 1 2 ≥ 0 \boldsymbol{\theta}^T\boldsymbol{x}=x_2-x_1^2\ge0 θTx=x2x120如下图

image-20230719165445489

现在决策边界是曲线了,参数 θ \theta θ可以再调整。如果再增加 x 2 2 x_2^2 x22就会有圆形得决策边界。

这就是逻辑回归,还有SVM(支持向量机得分类算法)也有很名。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 白话机器学习的数学pdf是一本以易懂的语言讲解机器学习中涉及的数学概念和算法的PDF教材。 在机器学习中,数学是一门非常重要的学科。它涵盖了许多基本的数学概念,如线性代数、微积分和概率论。这些数学概念在理解和应用各种机器学习算法时至关重要。 这本PDF教材以白话的方式解释了这些数学概念,使读者能够轻松理解和学习。它通过易懂的例子和图示来说明每个概念的含义和应用,帮助读者建立直观的认识。 PDF教材的内容包括线性代数的基本概念,如向量、矩阵和线性方程组,并解释了这些概念在机器学习中的应用,如特征向量和数据降维。 此外,PDF教材还讲解了微积分的概念和应用,如最优化问题和梯度下降算法。这些是机器学习中常用的算法,通过学习微积分,读者可以深入理解这些算法的原理和实现方式。 概率论也是机器学习中不可或缺的一部分,PDF教材简明扼要地介绍了概率的基本概念和常见的概率分布。它还解释了贝叶斯推断和朴素贝叶斯分类器在机器学习中的应用。 总的来说,这本白话机器学习的数学pdf以简单易懂的方式解释了机器学习中数学的基本概念和算法。它适合初学者学习和入门,也可以作为复习和回顾的参考资料。 ### 回答2: 白话机器学习的数学PDF是一本以简明易懂的语言阐述机器学习中涉及的数学原理和概念的电子书。它旨在帮助读者更好地理解机器学习算法背后的数学基础,为他们提供一个轻松的学习资源。 这本书首先介绍了机器学习的基本概念和应用领域,然后逐步深入到数学原理。它包括了涵盖机器学习所需的一系列数学概念,如线性代数、概率论、统计学和优化理论。 在书中,数学原理的阐述遵循了白话风格,尽可能用通俗的语言解释复杂的数学概念。它避免使用过多的数学符号和公式,而是通过图表和实际案例来讲解,以增加读者的理解和兴趣。 除了数学原理的介绍,这本PDF还提供了一些机器学习算法的实际应用示例和编程实践。这有助于读者将所学的数学知识应用到实际问题中,并加深对机器学习的理解。 总而言之,白话机器学习的数学PDF是一本适合初学者和希望巩固数学基础的机器学习爱好者阅读的书籍。它通过简单易懂的语言讲解了机器学习所需的数学知识,帮助读者更好地掌握机器学习算法的原理和应用。 ### 回答3: 白话机器学习的数学PDF是一份以简单易懂的语言解释机器学习中所涉及的数学概念和方法的文档。机器学习是一门将数学、统计学和计算机科学相结合的学科,因此理解其中的数学原理是非常重要的。 这份PDF将数学概念和方法以白话的方式呈现,使得读者可以更轻松地理解和学习。它包含了机器学习中常用的数学概念,如线性代数、统计学和概率论等。读者可以在其中找到关于向量、矩阵、矩阵运算、概率分布、条件概率以及最小乘法等内容的解释和示例。 这份PDF的目的是帮助读者建立对机器学习数学理论的基本认识,使其能够更好地应用这些知识于实际问题中。通过简单易懂的解释和示例,读者可以更好地理解和运用机器学习中的数学原理。 总而言之,白话机器学习的数学PDF是一份让读者更轻松地理解和学习机器学习中所涉及的数学概念和方法的文档。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值