梯度消失/梯度爆炸

梯度消失/梯度爆炸(Vanishing / Exploding gradients)

梯度消失或梯度爆炸:训练神经网络的时候,导数或坡度有时会变得非常大,或者非常小,甚至于以指数方式变小,这加大了训练的难度。

在这里插入图片描述

g ( z ) = z , b [ l ] = 0 g(z)=z,b^{[l]}=0 g(z)=z,b[l]=0

y ^ = W [ l ] W [ l − 1 ] W [ l − 2 ] ⋯ W [ 3 ] W [ 2 ] W [ 1 ] x \hat{y}=W^{[l]}W^{[l-1]}W^{[l-2]}\cdots W^{[3]}W^{[2]}W^{[1]}x y^=W[l]W[l1]W[l2]W[3]W[2]W[1]x

z [ 1 ] = W [ 1 ] x z^{[1]}=W^{[1]}x z[1]=W[1]x

a [ 1 ] = g ( z [ 1 ] ) = z [ 1 ] a^{[1]}=g(z^{[1]})=z^{[1]} a[1]=g(z[1])=z[1]

a [ 2 ] = g ( z [ 2 ] ) = g ( w [ 2 ] a [ 1 ] ) a^{[2]}=g(z^{[2]})=g(w^{[2]}a^{[1]}) a[2]=g(z[2])=g(w[2]a[1])

⋯ \cdots

若: W [ l ] = [ 1.5 0 0 1.5 ] , y ^ = W [ L ] [ 1.5 0 0 1.5 ] L − 1 x W^{[l]}=\left[ \begin{matrix}1.5&0\\0&1.5\end{matrix} \right],\hat{y}=W^{[L]}\left[ \begin{matrix}1.5&0\\0&1.5\end{matrix} \right]^{L-1}x W[l]=[1.5001.5],y^=W[L][1.5001.5]L1x

注:假设 W [ L ] W^{[L]} W[L] W [ l ] W^{[l]} W[l] 相等

这会导致 y ^ \hat{y} y^ 呈指数级增长,比率: 1. 5 L 1.5^L 1.5L

相反,若 W [ l ] = [ 0.5 0 0 0.5 ] , y ^ = W [ L ] [ 0.5 0 0 0.5 ] L − 1 x W^{[l]}=\left[ \begin{matrix}0.5&0\\0&0.5\end{matrix} \right],\hat{y}=W^{[L]}\left[ \begin{matrix}0.5&0\\0&0.5\end{matrix} \right]^{L-1}x W[l]=[0.5000.5],y^=W[L][0.5000.5]L1x

  • 这会导致激活函数的值将以指数级下降,它是与网络层数数量 L L L 相关的函数,在深度网络中,激活函数以指数级递减。

W [ l ] W^{[l]} W[l] 略大于 1,激活函数将爆炸式增长

W [ l ] W^{[l]} W[l] 略小于 1,激活函数将以指数级递减

同理:与层数 L L L 相关的导数或梯度函数

循环神经网络(RNN)中的梯度消失/爆炸问题是由于反向传播过程中链式法则导致的,当网络深度增加时,激活函数的导数可能非常小(如sigmoid),使得浅层单元的权重更新极其微弱(梯度消失),而如果导数很大(如ReLU的导数在正值区域恒定),则深层单元可能会经历异常大的权重更新(梯度爆炸)。 为解决这个问题,RNN引入了几种策略: 1. **长期短期记忆(LSTM, Long Short-Term Memory)**[^4]:LSTM通过门控机制(包括输入门、遗忘门和输出门)来控制信息的流动,特别是通过一个称为细胞状态的记忆单元,可以有效地缓解梯度消失问题。 2. **门控循环单元(GRU, Gated Recurrent Unit)**[^5]:与LSTM类似,GRU减少了部分门的数量,但同样利用门来控制信息流,从而减少梯度消失的可能性。 3. **梯度裁剪(Gradient Clipping)**[^6]:这是一种简单的方法,设置一个阈值,当梯度的范数超过这个阈值时,将其缩放到该阈值以内,以防止梯度过大导致爆炸。 4. **初始化权重**:合适的权重初始化策略,如Xavier或He初始化,可以帮助网络更稳定地学习。 5. **残差连接(Residual Connections)**[^7]:虽然不直接针对梯度问题设计,但在深度RNN中添加跨层的直接路径,可以让梯度更容易通过网络传递。 \[ ^4 \] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. \[ ^5 \] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. \[ ^6 \] Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. International conference on machine learning, 1319-1327. \[ ^7 \] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值