在 C 语言中,我们可以编写三个函数分别来计算矩阵的和、数与矩阵相乘以及矩阵的行列式。这里我将给出基本的示例代码,但请注意,对于大规模的矩阵操作,实际应用中可能会使用更高效的库如 `lapack` 或者 `BLAS`。
1. 矩阵和的计算 (`matrix_sum.c`):
```c
#include <stdio.h>
void matrix_add(int a[4][4], int b[4][4]) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
a[i][j] += b[i][j];
}
}
}
// 主函数用于演示
int main() {
int matrix1[4][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
{13, 14, 15, 16}};
int matrix2[4][4] = {{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1},
{1, 1, 1, 1}};
matrix_add(matrix1, matrix2);
// 打印结果
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
printf("%d ", matrix1[i][j]);
}
printf("\n");
}
return 0;
}
```
2. 数与矩阵相乘 (`vector_matrix_multiply.c`,这里假设列向量乘法):
```c
#include <stdio.h>
#define SIZE 4
void vector_times_matrix(int vector[SIZE], int matrix[SIZE][SIZE], int result[SIZE]) {
for (int i = 0; i < SIZE; i++) {
result[i] = 0;
for (int j = 0; j < SIZE; j++) {
result[i] += vector[j] * matrix[i][j];
}
}
}
// 主函数用于演示
int main() {
int vector[4] = {1, 2, 3, 4};
int matrix[4][4] = {{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
{13, 14, 15, 16}};
int result[SIZE];
vector_times_matrix(vector, matrix, result);
// 打印结果
for (int i = 0; i < SIZE; i++) {
printf("%d ", result[i]);
}
return 0;
}
```
3. 行列式的计算 (`determinant.c`,这里使用高斯消元法简化描述):
```c
#include <stdio.h>
long long determinant(int matrix[4][4]) {
if (is_square(matrix)) {
long long det = matrix[0][0] * determinant_submatrix(matrix, 0, 0) -
matrix[0][1] * determinant_submatrix(matrix, 0, 1) +
matrix[0][2] * determinant_submatrix(matrix, 0, 2) -
matrix[0][3] * determinant_submatrix(matrix, 0, 3);
return det;
} else {
return matrix[0][0];
}
}
// 辅助函数计算指定行和列删除后的子矩阵行列式
long long determinant_submatrix(int matrix[4][4], int row, int col) {
//...
// 实现递归计算子矩阵的行列式
}
// 主函数用于演示
int main() {
int matrix[4][4] = ... // 初始化一个4x4矩阵
long long det = determinant(matrix);
printf("Matrix Determinant: %lld\n", det);
return 0;
}
```
注意,以上代码中 `determinant_submatrix` 函数需要进一步实现,这里仅展示基本思路。对于真正的高斯消元算法,你需要处理更多的细节,例如交换行、行倍加等操作。同样,由于篇幅限制,`vector_times_matrix` 中的实现也较为简略,实际应用中应考虑边界条件和效率优化。