利用配方法引入特征根法来求解二阶递推通项

本文深入探讨了利用配方法和特征根法解决二阶递推通项的方法。通过分析一阶递推的构造逻辑,解释了为何在二阶递推中需要构造等比数列,并通过特征方程的求解给出通项公式。以斐波那契数列为典例,展示了实际应用中的解题步骤,有助于深化对递推序列的理解。
摘要由CSDN通过智能技术生成

利用配方法引入特征根法来求解二阶递推通项

引言 本文从配方法的角度引入特征法来求解二阶递推通项; 利用高中的知识水平便可以理解, 笔者观察相似文章皆是聚焦于通项的推导, 并未以思考的方式去回答为何做出这些构造. 因此, 笔者尝试从自然的思考逻辑角度推导二阶递推通项, 同时对关键运算的推导并未跳步, 来使计算能力较弱的同学理解运算过程, 力求令高中数列知识水平掌握不佳的同学也可理解特征根法.

明确求数列通项的核心方法与思想

​ 高中我们学习的等差数列和等比数列, 其推导过程运用的 累加法累乘法 便是核心方法; 对于不可直接累乘和累加时我们常常利用 转化与化归 的思想构造新数列, 构造的核心方法是 待定系数 法, 使其可以累加和累乘, 最终可以达到求解通项的方法.

​ 高中时不少同学已经听老师讲授求解二阶递推需要构造等比数列, 并未讲解为什么构造等比, 所以很容易可以引出两个问题:
( 1 ) . 为什么要构造等比数列 ? ( 2 ) . 为什么能构造等比数列 ? (1). 为什么要构造等比数列? \\ (2). 为什么能构造等比数列? (1).为什么要构造等比数列?(2).为什么能构造等比数列?
​ 自然的想, 理解二阶递推为何这样构造, 便要理解一阶递推为何也如此构造, 对于 a n = A a n − 1 + f ( n ) a_n = Aa_{n-1} + f(n) an=Aan1+f(n) 型的数列我们发现无论如何运算都无法使 a n a_n an a n − 1 a_{n-1} an1 的系数一致, 因此便无法进行等差数列的构造. 对于数学的研究, 我们总是希望一个新的问题能够转化为若干个已知的旧问题; 因此, 我们想能够构造等比数列吗? 如果构造成功, 那就够必如下面的数学式一样, 体现从 n − 1 n-1 n1 n n n 的递推关系
a n + λ f ( n ) = A ( a n − 1 + λ f ( n − 1 ) ) (1) a_n + \lambda f(n) = A(a_{n-1} + \lambda f(n-1)) \tag{1} an+λf(n)=A(an1+λf(n1))(1)
进行对应系数相同我们有
a n = A a n − 1 + λ A f ( n − 1 ) − λ f ( n ) a_n = Aa_{n-1} + \lambda A f(n-1) - \lambda f(n) an=Aan1+λAf(n1)λf(n)

λ A f ( n − 1 ) − λ f ( n ) = f ( n ) (*) \lambda A f(n-1) - \lambda f(n) = f(n) \tag{*} λAf(n1)λf(n)=f(n)(*)
我们假设 f ( n ) f(n) f(n) 不恒等于零(若 f ( n ) ≡ 0 f(n) \equiv 0 f(n)0 则便可构造等比数列), 因此 λ ≠ 0 \lambda \ne 0 λ=0 , 若 f ( n ) = 0 f(n)=0 f(n)=0 为一元一次方程则 ( ∗ ) (*) () 式显然有解, 则说明若 f ( n ) = k x + b ,    k , b ∈ R f(n)=kx+b,\, \, k,b\in \mathbb R f(n)=kx+b,k,bR , 则 ( 1 ) (1) (1) 一定成立.

​ 对于二阶递推我们同理也可讨论上述两个问题, 不妨设二阶递推为
D n = a D n − 1 + b D n − 2 , ( D 1 = c 1 , D 2 = c 2 ) D_n = aD_{n-1} +bD_{n-2},(D_1=c_1,D_2=c_2) Dn=aDn1+bDn2,(D1=c1,D2=c2)
如果构造等差数列, 则需要左右系数相等, 即构造形式如下
D n + ( 1 − a ) D n − 1 = D n − 1 + b D n − 2 D_n + (1-a)D_{n-1} = D_{n-1} + bD_{n-2} Dn+(1a)Dn1=Dn1+bDn2
1 − a = b 1-a=b 1a=b 则可以构造等差数列(也可看成公比为 1 1 1 的等比数列) b n = D n + b D n − 1 = D 2 + b D 1 b_n = D_n + bD_{n-1}=D_2+bD_1 bn=Dn+bDn1=D2+bD1 , 然后再利用一阶递推求解

1 − a ≠ b 1-a \ne b 1a=b 则只能构造等比数列, 即
D n + λ 1 D n − 1 = λ 2 ( D n − 1 + λ 1 D n − 2 ) D_n + \lambda_1 D_{n-1} = \lambda_2(D_{n-1} + \lambda_1 D_{n-2}) Dn+λ1Dn1=λ2(Dn1+λ1Dn2)
整理得
D n = ( λ 2 − λ 1 ) D n − 1 + λ 2 λ 1 D n − 2 D_n = (\lambda_2 - \lambda_1)D_{n-1} + \lambda_2\lambda_1D_{n-2} Dn=(λ2λ1)Dn1+λ2λ1Dn2
于是我们得到方程组
{ λ 2 − λ 1 = a , λ 2 λ 1 = b . \begin{cases} \lambda_2 - \lambda_1 = a, \\ \lambda_2\lambda_1 = b. \end{cases} {λ2λ1=a,λ2λ1=b.
在此处我们 观察结构 (观察数学式的结构, 向已知内容靠拢, 在数学解题中十分重要), 不难发现其与韦达定理十分相似, 不妨重新构造
D n − x 1 D n − 1 = x 2 ( D n − 1 − x 1 D n − 2 ) (2) D_n - x_1 D_{n-1} = x_2(D_{n-1} - x_1 D_{n-2}) \tag{2} Dnx1Dn1=x2(Dn1x1Dn2)(2)
整理得
D n = ( x 2 + x 1 ) D n − 1 − x 1 x 2 D n − 2 D_n = (x_2 + x_1)D_{n-1} - x_1x_2D_{n-2} Dn=(x2+x1)Dn1x1x2Dn2
于是我们得到方程组
{ x 2 + x 1 = a , x 1 x 2 = − b . \begin{cases} x_2 + x_1 = a, \\ x_1x_2 = -b. \end{cases} {x2+x1=a,x1x2=b.
构造特征方程
x 2 − a x − b = 0 x^2-ax-b=0 x2axb=0
​ 回到最初的问题, 为什么能这样构造递推式? 显然如果特征方程有解, 便可以构造. 如果我们将数域从实数域扩展到复数域上, 则上述特征方程必定有解, 即 ( 2 ) (2) (2) 式的构造一定可以.

​ 以上叙述, 回答了为什么在求二阶递推通项时要构造等比数列, 和为什么能构造等比数列的问题. 这为下面的推导定下了正确的基础.

从配方法到特征根法

​ 上文已经说明了如何从配方法得到特征方程, 下面我们利用特征根来推导二阶递推的通项. 不妨设二阶递推式如下
F n + 1 = p F n + q F n − 1 ,    F 1 = c 1 , F 2 = c 2 (3) F_{n+1}=pF_n+qF_{n-1}, \, \, F_1=c_1,F_2=c_2 \tag{3} Fn+1=pFn+qFn1,F1=c1,F2=c2(3)
构造等比数列, 且进行递推
F n + 1 − x 1 F n = x 2 ( F n − x 1 F n − 1 ) = x 2 2 ( F n − 1 − x 1 F n − 2 ) = ⋯ = x 2 n − 1 ( F n − ( n − 2 ) − x 1 F n − ( n − 1 ) ) = x 2 n − 1 ( F 2 − x 1 F 1 ) (4) F_{n+1} - x_1 F_{n} = x_2(F_{n} - x_1 F_{n-1}) =x_2^2(F_{n-1} - x_1 F_{n-2}) \\ = \dots =x_2^{n-1}(F_{n-(n-2)}-x_1F_{n-(n-1)})=x_2^{n-1}(F_{2}-x_1F_{1}) \tag{4} Fn+1x1Fn=x2(Fnx1Fn1)=x22(Fn1x1Fn2)==x2n1(Fn(n2)x1Fn(n1))=x2n1(F2x1F1)(4)
得到方程组
{ x 2 + x 1 = p , x 1 x 2 = − q . (5) \begin{cases} x_2 + x_1 = p, \\ x_1x_2 = -q. \end{cases} \tag{5} {x2+x1=p,x1x2=q.(5)
构造特征方程
x 2 − p x − q = 0 (6) x^2-px-q=0 \tag{6} x2pxq=0(6)
解得
x 1 , x 2 ∈ { p − p 2 + 4 q 2 , p + p 2 + 4 q 2 } x_1,x_2 \in \{ \frac {p-\sqrt{p^2+4q}}{2},\frac {p+\sqrt{p^2+4q}}{2} \} x1,x2{2pp2+4q ,2p+p2+4q }
不难发现, 两解互换位置 ( 5 ) (5) (5) 式不变, 则两解带入 ( 4 ) (4) (4) 式均成立, 则有
F n + 1 − x 2 F n = x 1 ( F n − x 2 F n − 1 ) = x 1 2 ( F n − 1 − x 2 F n − 2 ) = ⋯ = x 1 n − 1 ( F n − ( n − 2 ) − x 2 F n − ( n − 1 ) ) = x 1 n − 1 ( F 2 − x 2 F 1 ) (7) F_{n+1} - x_2 F_{n} = x_1(F_{n} - x_2 F_{n-1}) =x_1^2(F_{n-1} - x_2 F_{n-2}) \\ = \dots =x_1^{n-1}(F_{n-(n-2)}-x_2F_{n-(n-1)})=x_1^{n-1}(F_{2}-x_2F_{1}) \tag{7} Fn+1x2Fn=x1(Fnx2Fn1)=x12(Fn1x2Fn2)==x1n1(Fn(n2)x2Fn(n1))=x1n1(F2x2F1)(7)
x 1 ≠ x 2 x_1\ne x_2 x1=x2 时我们将 ( 4 ) − ( 7 ) (4)-(7) (4)(7)
F n = x 2 n − 1 ( F 2 − x 1 F 1 ) − x 1 n − 1 ( F 2 − x 2 F 1 ) x 2 − x 1 = F 2 − x 1 F 1 x 2 ( x 2 − x 1 ) x 2 n − F 2 − x 2 F 1 x 1 ( x 2 − x 1 ) x 1 n (8) \begin{align} F_n&=\frac {x_2^{n-1}(F_{2}-x_1F_{1})-x_1^{n-1}(F_{2}-x_2F_{1})}{x_2-x_1} \\ &=\frac{F_{2}-x_1F_{1}}{x_2(x_2-x_1)}x_2^n-\frac{F_{2}-x_2F_{1}}{x_1(x_2-x_1)}x_1^n \end{align} \tag{8} Fn=x2x1x2n1(F2x1F1)x1n1(F2x2F1)=x2(x2x1)F2x1F1x2nx1(x2x1)F2x2F1x1n(8)

α = F 2 − x 1 F 1 x 2 ( x 2 − x 1 ) , β = − F 2 − x 2 F 1 x 1 ( x 2 − x 1 ) \alpha=\frac{F_{2}-x_1F_{1}}{x_2(x_2-x_1)},\quad \beta=-\frac{F_{2}-x_2F_{1}}{x_1(x_2-x_1)} α=x2(x2x1)F2x1F1,β=x1(x2x1)F2x2F1
则其通项为
F n = α x 2 n + β x 1 n (9) F_n=\alpha x_2^n + \beta x_1^n \tag{9} Fn=αx2n+βx1n(9)

x 1 = x 2 x_1=x_2 x1=x2 时, 我们将 ( 4 ) (4) (4) 式做如下变化
F n − x i F n − 1 = x i n − 2 ( F 2 − x i F 1 ) , i ∈ { 1 , 2 } ⇒ F n x i n − 2 − F n − 1 x i n − 3 = F 2 − x i F 1 \begin{align} F_{n} - x_i F_{n-1} &= x_i^{n-2}(F_{2}-x_iF_{1}),i \in \{1,2\}\\ \Rightarrow \frac{F_n}{x_i^{n-2}}-\frac{F_{n-1}}{x_i^{n-3}} &= F_2-x_iF_1 \end{align} FnxiFn1xin2Fnxin3Fn1=xin2(F2xiF1),i{1,2}=F2xiF1
因此数列 F n x i n − 2 \dfrac{F_n}{x_i^{n-2}} xin2Fn 是以 x i F 1 x_iF_1 xiF1为首项, 以 F 2 − x i F 1 F_2-x_iF_1 F2xiF1 为公差的等差数列, 其通项为
F n x i n − 2 = x i F 1 + ( F 2 − x i F 1 ) ( n − 1 ) ⇒ F n = F 1 x i n − 1 + ( F 2 − x i F 1 ) ( n − 1 ) x i x i n − 1 ⇒ F n = ( F 1 − F 2 − x i F 1 x i + F 2 − x i F 1 x i n ) x i n − 1 \begin{align} \frac{F_n}{x_i^{n-2}} &= x_iF_1 + (F_2-x_iF_1)(n-1) \\ \Rightarrow F_n &= F_1x_i^{n-1} + \frac{(F_2-x_iF_1)(n-1)}{x_i}x_i^{n-1} \\ \Rightarrow F_n &= \left ( F_1 - \frac{F_2-x_iF_1}{x_i} + \frac{F_2-x_iF_1}{x_i}n \right )x_i^{n-1} \end{align} xin2FnFnFn=xiF1+(F2xiF1)(n1)=F1xin1+xi(F2xiF1)(n1)xin1=(F1xiF2xiF1+xiF2xiF1n)xin1

α = F 1 − F 2 − x i F 1 x i ,    β = F 2 − x i F 1 x i \alpha = F_1 - \frac{F_2-x_iF_1}{x_i},\, \, \beta = \frac{F_2-x_iF_1}{x_i} α=F1xiF2xiF1,β=xiF2xiF1
则其通项为
F n = ( α + β n ) x i n − 1 , i ∈ { 1 , 2 } (10) F_n = (\alpha + \beta n)x_i^{n-1}, i\in \{1,2\} \tag{10} Fn=(α+βn)xin1,i{1,2}(10)
综合 ( 9 ) ( 10 ) (9) (10) (9)(10) 式可得二阶递推的通项公式
{ F n = α x 2 n + β x 1 n , ( x 1 ≠ x 2 ) F n = ( α + β n ) x i n − 1 , ( x 1 = x 2 , i ∈ { 1 , 2 } ) (11) \begin{cases} F_n=\alpha x_2^n + \beta x_1^n ,(x_1\ne x_2)\\ F_n = (\alpha + \beta n)x_i^{n-1},(x_1 = x_2, i\in \{1,2\}) \end{cases} \tag{11} {Fn=αx2n+βx1n,(x1=x2)Fn=(α+βn)xin1,(x1=x2,i{1,2})(11)
分别带入 F 1 F_1 F1 F 2 F_2 F2 即可求解待定系数 α \alpha α β \beta β , 从而得到通项公式.

实践应用

[典例] 已知斐波那契数列 ( F i b o n a c c i   s e q u e n c e ) (Fibonacci \, sequence) (Fibonaccisequence) F n = F n − 1 + F n − 2 , F 1 = 1 , F 2 = 1 , ( n ≥ 2 ) F_n = F_{n-1} + F_{n-2}, F_1=1, F_2=1,(n\ge2) Fn=Fn1+Fn2,F1=1,F2=1,(n2) , 求其通项公式.

S o l u t i o n : Solution: Solution:

构造数列如下
F n + 1 − x 1 F n = x 2 ( F n − x 1 F n − 1 ) F_{n+1} - x_1 F_{n} = x_2(F_{n} - x_1 F_{n-1}) Fn+1x1Fn=x2(Fnx1Fn1)
整理得
F n = ( x 2 + x 1 ) F n − 1 − x 1 x 2 F n − 2 F_n = (x_2 + x_1)F_{n-1} - x_1x_2F_{n-2} Fn=(x2+x1)Fn1x1x2Fn2
于是我们得到方程组
{ x 1 + x 2 = 1 , x 1 x 2 = − 1. \begin{cases} x_1 + x_2 = 1, \\ x_1x_2 = -1. \end{cases} {x1+x2=1,x1x2=1.
构造特征方程
x 2 − x − 1 = 0 x^2-x-1=0 x2x1=0
求得特征根为
{ x 1 = 1 − 5 2 x 2 = 1 + 5 2 \begin{cases} x_1=\dfrac{1-\sqrt{5}}{2} \\ x_2=\dfrac{1+\sqrt{5}}{2} \end{cases} x1=215 x2=21+5
根据结论可得
F n = α x 2 n + β x 1 n F_n=\alpha x_2^n + \beta x_1^n Fn=αx2n+βx1n
带入 F 1 = 1 , F 2 = 1 F_1=1,F_2=1 F1=1,F2=1
{ α x 2 + β x 1 = 1 α x 2 2 + β x 1 2 = 1 \begin{cases} \alpha x_2 + \beta x_1=1 \\ \alpha x_2^2 + \beta x_1^2=1 \end{cases} {αx2+βx1=1αx22+βx12=1
解得
α = 5 5 ,    β = − 5 5 \alpha = \frac {\sqrt{5}}{5},\, \, \beta = -\frac {\sqrt{5}}{5} α=55 ,β=55
因此 F n F_n Fn 的通项公式为
F n = 5 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] . F_n=\frac{\sqrt{5}}{5} \left [ \left ( \dfrac{1+\sqrt{5}}{2} \right )^n - \left ( \dfrac{1-\sqrt{5}}{2} \right )^n \right ]. Fn=55 [(21+5 )n(215 )n].

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值