利用配方法引入特征根法来求解二阶递推通项
引言 本文从配方法的角度引入特征法来求解二阶递推通项; 利用高中的知识水平便可以理解, 笔者观察相似文章皆是聚焦于通项的推导, 并未以思考的方式去回答为何做出这些构造. 因此, 笔者尝试从自然的思考逻辑角度推导二阶递推通项, 同时对关键运算的推导并未跳步, 来使计算能力较弱的同学理解运算过程, 力求令高中数列知识水平掌握不佳的同学也可理解特征根法.
明确求数列通项的核心方法与思想
高中我们学习的等差数列和等比数列, 其推导过程运用的 累加法 和 累乘法 便是核心方法; 对于不可直接累乘和累加时我们常常利用 转化与化归 的思想构造新数列, 构造的核心方法是 待定系数 法, 使其可以累加和累乘, 最终可以达到求解通项的方法.
高中时不少同学已经听老师讲授求解二阶递推需要构造等比数列, 并未讲解为什么构造等比, 所以很容易可以引出两个问题:
(
1
)
.
为什么要构造等比数列
?
(
2
)
.
为什么能构造等比数列
?
(1). 为什么要构造等比数列? \\ (2). 为什么能构造等比数列?
(1).为什么要构造等比数列?(2).为什么能构造等比数列?
自然的想, 理解二阶递推为何这样构造, 便要理解一阶递推为何也如此构造, 对于
a
n
=
A
a
n
−
1
+
f
(
n
)
a_n = Aa_{n-1} + f(n)
an=Aan−1+f(n) 型的数列我们发现无论如何运算都无法使
a
n
a_n
an 和
a
n
−
1
a_{n-1}
an−1 的系数一致, 因此便无法进行等差数列的构造. 对于数学的研究, 我们总是希望一个新的问题能够转化为若干个已知的旧问题; 因此, 我们想能够构造等比数列吗? 如果构造成功, 那就够必如下面的数学式一样, 体现从
n
−
1
n-1
n−1 到
n
n
n 的递推关系
a
n
+
λ
f
(
n
)
=
A
(
a
n
−
1
+
λ
f
(
n
−
1
)
)
(1)
a_n + \lambda f(n) = A(a_{n-1} + \lambda f(n-1)) \tag{1}
an+λf(n)=A(an−1+λf(n−1))(1)
进行对应系数相同我们有
a
n
=
A
a
n
−
1
+
λ
A
f
(
n
−
1
)
−
λ
f
(
n
)
a_n = Aa_{n-1} + \lambda A f(n-1) - \lambda f(n)
an=Aan−1+λAf(n−1)−λf(n)
即
λ
A
f
(
n
−
1
)
−
λ
f
(
n
)
=
f
(
n
)
(*)
\lambda A f(n-1) - \lambda f(n) = f(n) \tag{*}
λAf(n−1)−λf(n)=f(n)(*)
我们假设
f
(
n
)
f(n)
f(n) 不恒等于零(若
f
(
n
)
≡
0
f(n) \equiv 0
f(n)≡0 则便可构造等比数列), 因此
λ
≠
0
\lambda \ne 0
λ=0 , 若
f
(
n
)
=
0
f(n)=0
f(n)=0 为一元一次方程则
(
∗
)
(*)
(∗) 式显然有解, 则说明若
f
(
n
)
=
k
x
+
b
,
k
,
b
∈
R
f(n)=kx+b,\, \, k,b\in \mathbb R
f(n)=kx+b,k,b∈R , 则
(
1
)
(1)
(1) 一定成立.
对于二阶递推我们同理也可讨论上述两个问题, 不妨设二阶递推为
D
n
=
a
D
n
−
1
+
b
D
n
−
2
,
(
D
1
=
c
1
,
D
2
=
c
2
)
D_n = aD_{n-1} +bD_{n-2},(D_1=c_1,D_2=c_2)
Dn=aDn−1+bDn−2,(D1=c1,D2=c2)
如果构造等差数列, 则需要左右系数相等, 即构造形式如下
D
n
+
(
1
−
a
)
D
n
−
1
=
D
n
−
1
+
b
D
n
−
2
D_n + (1-a)D_{n-1} = D_{n-1} + bD_{n-2}
Dn+(1−a)Dn−1=Dn−1+bDn−2
若
1
−
a
=
b
1-a=b
1−a=b 则可以构造等差数列(也可看成公比为
1
1
1 的等比数列)
b
n
=
D
n
+
b
D
n
−
1
=
D
2
+
b
D
1
b_n = D_n + bD_{n-1}=D_2+bD_1
bn=Dn+bDn−1=D2+bD1 , 然后再利用一阶递推求解
若
1
−
a
≠
b
1-a \ne b
1−a=b 则只能构造等比数列, 即
D
n
+
λ
1
D
n
−
1
=
λ
2
(
D
n
−
1
+
λ
1
D
n
−
2
)
D_n + \lambda_1 D_{n-1} = \lambda_2(D_{n-1} + \lambda_1 D_{n-2})
Dn+λ1Dn−1=λ2(Dn−1+λ1Dn−2)
整理得
D
n
=
(
λ
2
−
λ
1
)
D
n
−
1
+
λ
2
λ
1
D
n
−
2
D_n = (\lambda_2 - \lambda_1)D_{n-1} + \lambda_2\lambda_1D_{n-2}
Dn=(λ2−λ1)Dn−1+λ2λ1Dn−2
于是我们得到方程组
{
λ
2
−
λ
1
=
a
,
λ
2
λ
1
=
b
.
\begin{cases} \lambda_2 - \lambda_1 = a, \\ \lambda_2\lambda_1 = b. \end{cases}
{λ2−λ1=a,λ2λ1=b.
在此处我们 观察结构 (观察数学式的结构, 向已知内容靠拢, 在数学解题中十分重要), 不难发现其与韦达定理十分相似, 不妨重新构造
D
n
−
x
1
D
n
−
1
=
x
2
(
D
n
−
1
−
x
1
D
n
−
2
)
(2)
D_n - x_1 D_{n-1} = x_2(D_{n-1} - x_1 D_{n-2}) \tag{2}
Dn−x1Dn−1=x2(Dn−1−x1Dn−2)(2)
整理得
D
n
=
(
x
2
+
x
1
)
D
n
−
1
−
x
1
x
2
D
n
−
2
D_n = (x_2 + x_1)D_{n-1} - x_1x_2D_{n-2}
Dn=(x2+x1)Dn−1−x1x2Dn−2
于是我们得到方程组
{
x
2
+
x
1
=
a
,
x
1
x
2
=
−
b
.
\begin{cases} x_2 + x_1 = a, \\ x_1x_2 = -b. \end{cases}
{x2+x1=a,x1x2=−b.
构造特征方程
x
2
−
a
x
−
b
=
0
x^2-ax-b=0
x2−ax−b=0
回到最初的问题, 为什么能这样构造递推式? 显然如果特征方程有解, 便可以构造. 如果我们将数域从实数域扩展到复数域上, 则上述特征方程必定有解, 即
(
2
)
(2)
(2) 式的构造一定可以.
以上叙述, 回答了为什么在求二阶递推通项时要构造等比数列, 和为什么能构造等比数列的问题. 这为下面的推导定下了正确的基础.
从配方法到特征根法
上文已经说明了如何从配方法得到特征方程, 下面我们利用特征根来推导二阶递推的通项. 不妨设二阶递推式如下
F
n
+
1
=
p
F
n
+
q
F
n
−
1
,
F
1
=
c
1
,
F
2
=
c
2
(3)
F_{n+1}=pF_n+qF_{n-1}, \, \, F_1=c_1,F_2=c_2 \tag{3}
Fn+1=pFn+qFn−1,F1=c1,F2=c2(3)
构造等比数列, 且进行递推
F
n
+
1
−
x
1
F
n
=
x
2
(
F
n
−
x
1
F
n
−
1
)
=
x
2
2
(
F
n
−
1
−
x
1
F
n
−
2
)
=
⋯
=
x
2
n
−
1
(
F
n
−
(
n
−
2
)
−
x
1
F
n
−
(
n
−
1
)
)
=
x
2
n
−
1
(
F
2
−
x
1
F
1
)
(4)
F_{n+1} - x_1 F_{n} = x_2(F_{n} - x_1 F_{n-1}) =x_2^2(F_{n-1} - x_1 F_{n-2}) \\ = \dots =x_2^{n-1}(F_{n-(n-2)}-x_1F_{n-(n-1)})=x_2^{n-1}(F_{2}-x_1F_{1}) \tag{4}
Fn+1−x1Fn=x2(Fn−x1Fn−1)=x22(Fn−1−x1Fn−2)=⋯=x2n−1(Fn−(n−2)−x1Fn−(n−1))=x2n−1(F2−x1F1)(4)
得到方程组
{
x
2
+
x
1
=
p
,
x
1
x
2
=
−
q
.
(5)
\begin{cases} x_2 + x_1 = p, \\ x_1x_2 = -q. \end{cases} \tag{5}
{x2+x1=p,x1x2=−q.(5)
构造特征方程
x
2
−
p
x
−
q
=
0
(6)
x^2-px-q=0 \tag{6}
x2−px−q=0(6)
解得
x
1
,
x
2
∈
{
p
−
p
2
+
4
q
2
,
p
+
p
2
+
4
q
2
}
x_1,x_2 \in \{ \frac {p-\sqrt{p^2+4q}}{2},\frac {p+\sqrt{p^2+4q}}{2} \}
x1,x2∈{2p−p2+4q,2p+p2+4q}
不难发现, 两解互换位置
(
5
)
(5)
(5) 式不变, 则两解带入
(
4
)
(4)
(4) 式均成立, 则有
F
n
+
1
−
x
2
F
n
=
x
1
(
F
n
−
x
2
F
n
−
1
)
=
x
1
2
(
F
n
−
1
−
x
2
F
n
−
2
)
=
⋯
=
x
1
n
−
1
(
F
n
−
(
n
−
2
)
−
x
2
F
n
−
(
n
−
1
)
)
=
x
1
n
−
1
(
F
2
−
x
2
F
1
)
(7)
F_{n+1} - x_2 F_{n} = x_1(F_{n} - x_2 F_{n-1}) =x_1^2(F_{n-1} - x_2 F_{n-2}) \\ = \dots =x_1^{n-1}(F_{n-(n-2)}-x_2F_{n-(n-1)})=x_1^{n-1}(F_{2}-x_2F_{1}) \tag{7}
Fn+1−x2Fn=x1(Fn−x2Fn−1)=x12(Fn−1−x2Fn−2)=⋯=x1n−1(Fn−(n−2)−x2Fn−(n−1))=x1n−1(F2−x2F1)(7)
当
x
1
≠
x
2
x_1\ne x_2
x1=x2 时我们将
(
4
)
−
(
7
)
(4)-(7)
(4)−(7) 得
F
n
=
x
2
n
−
1
(
F
2
−
x
1
F
1
)
−
x
1
n
−
1
(
F
2
−
x
2
F
1
)
x
2
−
x
1
=
F
2
−
x
1
F
1
x
2
(
x
2
−
x
1
)
x
2
n
−
F
2
−
x
2
F
1
x
1
(
x
2
−
x
1
)
x
1
n
(8)
\begin{align} F_n&=\frac {x_2^{n-1}(F_{2}-x_1F_{1})-x_1^{n-1}(F_{2}-x_2F_{1})}{x_2-x_1} \\ &=\frac{F_{2}-x_1F_{1}}{x_2(x_2-x_1)}x_2^n-\frac{F_{2}-x_2F_{1}}{x_1(x_2-x_1)}x_1^n \end{align} \tag{8}
Fn=x2−x1x2n−1(F2−x1F1)−x1n−1(F2−x2F1)=x2(x2−x1)F2−x1F1x2n−x1(x2−x1)F2−x2F1x1n(8)
令
α
=
F
2
−
x
1
F
1
x
2
(
x
2
−
x
1
)
,
β
=
−
F
2
−
x
2
F
1
x
1
(
x
2
−
x
1
)
\alpha=\frac{F_{2}-x_1F_{1}}{x_2(x_2-x_1)},\quad \beta=-\frac{F_{2}-x_2F_{1}}{x_1(x_2-x_1)}
α=x2(x2−x1)F2−x1F1,β=−x1(x2−x1)F2−x2F1
则其通项为
F
n
=
α
x
2
n
+
β
x
1
n
(9)
F_n=\alpha x_2^n + \beta x_1^n \tag{9}
Fn=αx2n+βx1n(9)
当
x
1
=
x
2
x_1=x_2
x1=x2 时, 我们将
(
4
)
(4)
(4) 式做如下变化
F
n
−
x
i
F
n
−
1
=
x
i
n
−
2
(
F
2
−
x
i
F
1
)
,
i
∈
{
1
,
2
}
⇒
F
n
x
i
n
−
2
−
F
n
−
1
x
i
n
−
3
=
F
2
−
x
i
F
1
\begin{align} F_{n} - x_i F_{n-1} &= x_i^{n-2}(F_{2}-x_iF_{1}),i \in \{1,2\}\\ \Rightarrow \frac{F_n}{x_i^{n-2}}-\frac{F_{n-1}}{x_i^{n-3}} &= F_2-x_iF_1 \end{align}
Fn−xiFn−1⇒xin−2Fn−xin−3Fn−1=xin−2(F2−xiF1),i∈{1,2}=F2−xiF1
因此数列
F
n
x
i
n
−
2
\dfrac{F_n}{x_i^{n-2}}
xin−2Fn 是以
x
i
F
1
x_iF_1
xiF1为首项, 以
F
2
−
x
i
F
1
F_2-x_iF_1
F2−xiF1 为公差的等差数列, 其通项为
F
n
x
i
n
−
2
=
x
i
F
1
+
(
F
2
−
x
i
F
1
)
(
n
−
1
)
⇒
F
n
=
F
1
x
i
n
−
1
+
(
F
2
−
x
i
F
1
)
(
n
−
1
)
x
i
x
i
n
−
1
⇒
F
n
=
(
F
1
−
F
2
−
x
i
F
1
x
i
+
F
2
−
x
i
F
1
x
i
n
)
x
i
n
−
1
\begin{align} \frac{F_n}{x_i^{n-2}} &= x_iF_1 + (F_2-x_iF_1)(n-1) \\ \Rightarrow F_n &= F_1x_i^{n-1} + \frac{(F_2-x_iF_1)(n-1)}{x_i}x_i^{n-1} \\ \Rightarrow F_n &= \left ( F_1 - \frac{F_2-x_iF_1}{x_i} + \frac{F_2-x_iF_1}{x_i}n \right )x_i^{n-1} \end{align}
xin−2Fn⇒Fn⇒Fn=xiF1+(F2−xiF1)(n−1)=F1xin−1+xi(F2−xiF1)(n−1)xin−1=(F1−xiF2−xiF1+xiF2−xiF1n)xin−1
令
α
=
F
1
−
F
2
−
x
i
F
1
x
i
,
β
=
F
2
−
x
i
F
1
x
i
\alpha = F_1 - \frac{F_2-x_iF_1}{x_i},\, \, \beta = \frac{F_2-x_iF_1}{x_i}
α=F1−xiF2−xiF1,β=xiF2−xiF1
则其通项为
F
n
=
(
α
+
β
n
)
x
i
n
−
1
,
i
∈
{
1
,
2
}
(10)
F_n = (\alpha + \beta n)x_i^{n-1}, i\in \{1,2\} \tag{10}
Fn=(α+βn)xin−1,i∈{1,2}(10)
综合
(
9
)
(
10
)
(9) (10)
(9)(10) 式可得二阶递推的通项公式
{
F
n
=
α
x
2
n
+
β
x
1
n
,
(
x
1
≠
x
2
)
F
n
=
(
α
+
β
n
)
x
i
n
−
1
,
(
x
1
=
x
2
,
i
∈
{
1
,
2
}
)
(11)
\begin{cases} F_n=\alpha x_2^n + \beta x_1^n ,(x_1\ne x_2)\\ F_n = (\alpha + \beta n)x_i^{n-1},(x_1 = x_2, i\in \{1,2\}) \end{cases} \tag{11}
{Fn=αx2n+βx1n,(x1=x2)Fn=(α+βn)xin−1,(x1=x2,i∈{1,2})(11)
分别带入
F
1
F_1
F1 、
F
2
F_2
F2 即可求解待定系数
α
\alpha
α 、
β
\beta
β , 从而得到通项公式.
实践应用
[典例] 已知斐波那契数列 ( F i b o n a c c i s e q u e n c e ) (Fibonacci \, sequence) (Fibonaccisequence) F n = F n − 1 + F n − 2 , F 1 = 1 , F 2 = 1 , ( n ≥ 2 ) F_n = F_{n-1} + F_{n-2}, F_1=1, F_2=1,(n\ge2) Fn=Fn−1+Fn−2,F1=1,F2=1,(n≥2) , 求其通项公式.
S o l u t i o n : Solution: Solution:
构造数列如下
F
n
+
1
−
x
1
F
n
=
x
2
(
F
n
−
x
1
F
n
−
1
)
F_{n+1} - x_1 F_{n} = x_2(F_{n} - x_1 F_{n-1})
Fn+1−x1Fn=x2(Fn−x1Fn−1)
整理得
F
n
=
(
x
2
+
x
1
)
F
n
−
1
−
x
1
x
2
F
n
−
2
F_n = (x_2 + x_1)F_{n-1} - x_1x_2F_{n-2}
Fn=(x2+x1)Fn−1−x1x2Fn−2
于是我们得到方程组
{
x
1
+
x
2
=
1
,
x
1
x
2
=
−
1.
\begin{cases} x_1 + x_2 = 1, \\ x_1x_2 = -1. \end{cases}
{x1+x2=1,x1x2=−1.
构造特征方程
x
2
−
x
−
1
=
0
x^2-x-1=0
x2−x−1=0
求得特征根为
{
x
1
=
1
−
5
2
x
2
=
1
+
5
2
\begin{cases} x_1=\dfrac{1-\sqrt{5}}{2} \\ x_2=\dfrac{1+\sqrt{5}}{2} \end{cases}
⎩
⎨
⎧x1=21−5x2=21+5
根据结论可得
F
n
=
α
x
2
n
+
β
x
1
n
F_n=\alpha x_2^n + \beta x_1^n
Fn=αx2n+βx1n
带入
F
1
=
1
,
F
2
=
1
F_1=1,F_2=1
F1=1,F2=1 得
{
α
x
2
+
β
x
1
=
1
α
x
2
2
+
β
x
1
2
=
1
\begin{cases} \alpha x_2 + \beta x_1=1 \\ \alpha x_2^2 + \beta x_1^2=1 \end{cases}
{αx2+βx1=1αx22+βx12=1
解得
α
=
5
5
,
β
=
−
5
5
\alpha = \frac {\sqrt{5}}{5},\, \, \beta = -\frac {\sqrt{5}}{5}
α=55,β=−55
因此
F
n
F_n
Fn 的通项公式为
F
n
=
5
5
[
(
1
+
5
2
)
n
−
(
1
−
5
2
)
n
]
.
F_n=\frac{\sqrt{5}}{5} \left [ \left ( \dfrac{1+\sqrt{5}}{2} \right )^n - \left ( \dfrac{1-\sqrt{5}}{2} \right )^n \right ].
Fn=55[(21+5)n−(21−5)n].