Prim算法(Prim's Algorithm),由罗伯特·普里姆(Robert C. Prim)于1957年提出,是一种用于构造加权无向图的最小生成树(Minimum Spanning Tree, MST)的贪心算法。最小生成树是一个无环子图,它包含图中的所有顶点,并且所有边的权重之和最小。Prim算法的基本思想是逐步从一个顶点开始,每次选择一条与当前生成树相连且权重最小的边,将其加入到生成树中,直到生成树包含图中的所有顶点。
主要特点:
-
贪心策略:算法每次选择与当前生成树相连的、权重最小的边,确保每一步都是局部最优选择,最终得到全局最优解(即最小生成树)。
-
优先队列优化:为了高效地找到与当前生成树相连的最小权重边,通常使用优先队列(如二叉堆)存储候选边,这样每次都能直接获取当前最小权重边。
-
边的标记:在算法过程中,需要标记已加入到生成树中的边和尚未考虑的边,以便跟踪构建过程。
基本步骤:
-
初始化:
- 选择一个起始顶点,将其加入到最小生成树中。
- 将所有与起始顶点相邻的边加入优先队列,它们的权重即为当前最小权重。
- 标记所有其他顶点为未访问。
-
循环处理:
- 从优先队