<<数值分析>> 第四章 非线性方程组的数值解法

        非线性现象广泛存在物质时间与社会生活,由于自然现象和实际问题的复杂性,无法求解出一般方程的准确解,因此很有必要进行数值解的研究,本文介绍非线性方程求根问题的数值方法。包括二分法、牛顿迭代法以及他们的收敛性判断和收敛速度的求解。

一.方程求根的理论依据

(1)代数基本定理:任何一个一元复系数方程式都至少有一个复数根。

(2)零点定理,f(x)在(a,b)区间连续,且f(a)·f(b)<0。则称f(x)在区间[a,b]内有根。

二.直接法

2.1二分法

2.1.1 二分法的理论依据:

        设函数f(x)在[a,b]上连续、严格单调,且f(a)·f(b)<0,则在[a,b]有且仅有一根。

2.1.2二分法的基本思想:

        反复对分区间,从而逐步缩小有根区间,直至满足精度为止。

2.1.3二分法的步骤

        取区间[a,b]的中点x{_{0}}=(a+b)/2,计算f(x{_{0}}),若 f(x{_{0}})=0,即为根,否则:

(1)若f(a)·f(x{_{0}})<0,则根在区间[a,x{_{0}}]中, [a,x{_{0}}]为新区间,并对新区间进行二等分。            (2)若 f(b)·f(x{_{0}})<0,则根在区间[b,x{_{0}}]中, [b,x{_{0}}]为新区间,并对新区间进行二等分。

        如此反复下去,无限逼近根所在的区间,确定二分的次数,得到一定精确值的解。

2.1.4二分法的终止条件

        已知区间[a,b],二分的次数k,给定的精度 \varepsilon 。解下面不等式得二分次数k

                                                                \frac{b-a}{2^{k+1}}< \varepsilon

三.迭代法

3.1不动点迭代

        迭代法即逐次逼近方法,是数值计算中一类典型方法,被用于数值计算得各个方面中。

3.1.1迭代过程及基本思想

        将方程f(x)=0,写成等价的迭代形式x=\varphi(x) 。由此确定了迭代法:

 例如:

        能够写成:

         构造迭代算法:

 3.1.2收敛性判断

         设方程f(x)=0在[a,b]上存在唯一解,x=\varphi(x) 是方程的等价形式

如果满足映内压缩性,则迭代公式对于区间任意取初值收敛:

(1)映内性:对任意的x\epsilon[a,b],对应\varphi (x)\epsilon[a,b]。

(2)压缩性:\left | \varphi (x)' \right |< L< 1,其中L是\left | \varphi (x)' \right |在a点的取值。

 局部收敛性与收敛阶

        局部收敛,\varphi (x)在x*处邻近连续,且满足:\left | \varphi '(x^{*}) \right |< 1,则迭代过程x_{k+1}=\varphi (x_{k})在邻近具有局部的收敛性。

收敛速度

特别地,时称为线性收敛(Linear Convergence),p> 1 时称为超线性收敛, p= 2 时称为平方收敛

        收敛阶,

(1) 若压缩因子0<L<1,则迭代过程x_{k+1}=\varphi (x_{k})为线性收敛.
(2) 若压缩因子0=L,则迭代过程x_{k+1}=\varphi (x_{k})为超线性收敛.
(3) 一般地,收敛阶p越大,迭代过程收敛越快.

 三.牛顿迭代法及其收敛性

牛顿迭代法是对f(x)进行一阶的泰勒展开,则有牛顿公式:

                                                        x_{k+1}=x_{k}-\frac{f(x_{k})}{f(x_{k})'}

 收敛性,若f(x)在单根x*附近存在连续的二阶导数,且初值x_{0}充分接近x*,则牛顿迭代法收敛。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值