超分辨率遥感图像去云的扩散增强训练

GitHub - littlebeen/Cloud-removal-model-collection: A collection of the existing end-to-end cloud removal model
readme

云恢复的扩散增强

基于ADM的超分辨率遥感图像去云扩散增强算法。

几种传统的CR模型可以参考https://github.com/littlebeen/Cloud-removal-model-collection!

使用

训练

纯扩散 respace.py: gaussian_diffusion;unet.py: UnetModel

锁定扩散+训练WA:gaussian_diffusion_enhance;unet.py: UnetModel256;锁定在train_util.py的第74行

全部更改  train_util.py第74行

测试

将预训练模型放入` pre_train `中
python super_res_sample.py
权重

在带有mn和mdsa的RICE2上进行预训练的模型被上传。百度网盘 请输入提取码 密码bean

CUHK-CR
一个新的多光谱云去除数据集
下载链接 百度网盘 请输入提取码 密码bean

-CUHK-CR1(薄云数据集CUHK-CR1的RGB图像)

-CUHK-CR2 (厚云数据集CUHK-CR2的RGB图像)

-近红外(CUHK-CR1及CUHK-CR2的近红外图像)
如果你需要4个波段(RGB + 近红外)的图像,你可以加载RGB数据集和近红外数据集中的图像,并将4个通道组合在一起。

 首先你要有一个cuda环境,然后安装资源包

pip install blobfile
pip install mpi4py

 运行 一个是训练一个是测试,先运行训练。

python super_res_train.py
python super_res_sample.py

运行报错

ImportError: DLL load failed while importing MPI: 找不到指定的模块。
因为本机缺乏MPI程序,直接此处下载 http
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值