一、引言
本文修改自我的摄影测量学期末实验报告
实验内容
使用Metashape软件,对常见物件进行摄影测量。基于三维重建结果,测量物件的长宽高,并对测量结果进行精度评价。
二、三维重建测量方法
对于Metashape软件中建立的三维重建模型,采用“编码目标和比例尺”的方式恢复其物理尺度,即通过打印标记来编码目标,在拍摄照片之前放置在场景中,即可在Agisoft Metashape中用作坐标系和比例定义的参考点,也可用作图像之间的有效匹配,以通过“对齐选定相机”选项帮助相机对齐过程。
主要分为“打印编码目标”、“在场景中放置编码目标并拍照”、“自动检测编码目标”、“创建比例尺并设置参考距离”四步。
1>打印编码目标
选择‘工具’菜单中的‘标记’选项,点击‘打印标记’命令,即Tool-Markers-Print Markers,设置对话框中的参数用于生成PDF文件。

导出并根据所需目标数量打印PDF文件

2>在场景中放置编码目标并拍照
将标记裁剪至适宜大小后放置在场景中或感兴趣的对象周围,同时避免产生平面变形或污损,以便至少从几张图像中可以清晰地看到编码目标。另外应注意与对象或场景相比,编码目标的大小不应太大或太小。建议拍摄照片上中心黑色圆圈点的半径不大于30像素。同时,中心实心圆的最小半径应为大约4-5个像素。


3>自动检测编码目标
选择“工具”>“标记”>“检测标记”命令,即Tools- Markers - Detect Markers,在对话框中选择相应的标记类型并调整“公差值”,点击确定,检测到的标记将根据编码目标标签进行命名。


4>创建比例尺并设置参考距离
选中一对标记点,右键选择“创建比例尺”(CreateScale Bar),并对每对距离已知的标记重复上述步骤。然后转到“参考”(Reference)窗格,为已知距离的每个比例尺插入距离。最后选中要用于模型缩放的所有比例尺,然后按“参考”窗格工具栏上的“更新”按钮。比例将应用于模型。


参考AgisoftMetashape官网发布的Knowledge base中Measurements部分有关Coded targets and Scale bars内容的介绍,链接如下:
https://agisoft.freshdesk.com/support/solutions/articles/31000148855-coded-targets-and-scale-bars
三、数据说明
数据采集设备:小米11手机后摄摄像头(型号:M2011K2C)
传感器:三星S5KHMX
传感器尺寸:1/1.33英寸
焦距:25mm
照片分辨率:4512×6016
我测量的物件:凳子(长:43.1cm宽:31.0cm 高:41.8cm)
四、实验过程
①导入图片
检查图像质量,提前删除质量较差的影像
Workflow-AddFolder


②对齐照片并生成密集点云
Workflow-AlignPhotos
Accuracy选择high表示较高精度;Reference preselection选择Sequential表示照片无内外方元素,通过照片数据组成像对。



③删除背景噪声点,减少点云模型误差

④生成网格
Workflow-BuildMesh Quality选择High,使模型拟合效果更好


⑤生成纹理
操作前先将模型另存为PSX文件 File-Save As 选择保存路径并保存文件名
Workflow-BuildTiled Model 选择默认参数,生成纹理




⑥检测标记

⑦创建比例尺并设置参考距离

五、 实验结果
1)测量值结果
凳子长的测量值为:42.85 cm、42.22cm、42.47cm
凳子宽的测量值为:30.57 cm、30.50cm、30.55cm
凳子高的测量值为:41.33 cm、42.02cm、42.08cm
长 |
![]() |
![]() |
![]() |
宽 |
![]() |
![]() |
![]() |
高 |
![]() |
![]() |
![]() |
2)绝对误差
由绝对误差=|测量值-实际值|可知:
第一组数据:
凳子长的绝对误差为0.25cm; 宽的绝对误差为0.43cm; 高的绝对误差为0.47cm。
第二组数据:
凳子长的绝对误差为0.88cm; 宽的绝对误差为0.50cm; 高的绝对误差为0.22cm。
第三组数据:
凳子长的绝对误差为0.63cm; 宽的绝对误差为0.45cm; 高的绝对误差为0.28cm。
3)中误差
中误差M为测量值X和实际值K差的平方和与观测次数n比值的平方根
结合多组测量结果计算如下:
序号 | 长(cm) | 宽(cm) | 高(cm) |
1 | 42.85 | 30.57 | 41.33 |
2 | 42.22 | 30.50 | 42.02 |
3 | 42.47 | 30.55 | 42.08 |
中误差 (M=1n(Xn-Kn)2n) | 0.641 | 0.461 | 0.340 |
六、结果分析
由绝对误差和中误差的计算结果可知,本次实验精度较好,模型比例还原程度高,物理尺度基本恢复。
分析引起测量误差的主要原因有二:
1)在建立比例尺并设置参考距离时,编码目标之间的距离测量存在估读,属于人为造成的偶然误差,可通过多次测量取平均值的方式减小;
2)在最终利用尺子工具选点测量时,选取的两点不在同一平面内产生误差影响结果,同时选取的两点存在偶然性也会产生误差。