1.题目
问题描述
给定一个1~N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少1,最终只剩一个数字。
例如:
3 1 2 4
4 3 6
7 9
16
现在如果知道N和最后得到的数字sum,请求出最初序列a[i],为1~N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解。
输入格式
第1行为两个正整数n,sum
输出格式
一个1~N的一个排列
样例输入
4 16
样例输出
3 1 2 4
数据规模和约定
0<n<=10
2.思路及代码
看到问题的规模不大,我最初想到的是暴力搜索,结果只有90分。代码如下:
#include <bits/stdc++.h>
using namespace std;
//判断被选择的数能否按照规则运算得到结果
bool Judge(vector<int>arr, int sum, int n) {
for (int i = 1; i <= n - 1; ++i) {
for (int k = 0; k < n - i; ++k) {
arr[k] += arr[k + 1];
}
}
if (sum == arr[0]) {
return true;
} else {
return false;
}
}
void Solution(int n, int sum, vector<int>&arr, int step, vector<int>index) {
if (step == n) {
if (Judge(arr, sum, n)) {
for (int i = 0; i < n; ++i) {
cout << arr[i] << ' ';
}
exit(0);
}
} else {
//递归搜索
for (int k = 1; k <= n; ++k) {
bool index_flag = true;
for (int i = 0; i < step; ++i) {
if (k == index[i]) {
index_flag = false;
break;
}
}
//不能重复
if (index_flag) {
arr[step] = k;
index[step] = k;
Solution(n, sum, arr, step + 1, index);
}
}
}
}
int main() {
int n, sum;
cin >> n >> sum;
vector<int>arr(n);
vector<int>index(n);
Solution(n, sum, arr, 0, index);
return 0;
}
经过求助大佬,我发现这题可以通过STL中的next_permutation函数求解,该函数用于求当前序列的下一个字典序序列,且时间复杂度仅为O(n / 2)。具体可看这一位大佬的讲解。于是便有:
#include <bits/stdc++.h>
using namespace std;
//判断该序列的数能否按照规则运算得到结果
bool Judge(vector<int>arr, int sum, int n) {
for (int i = 1; i <= n - 1; ++i) {
for (int k = 0; k < n - i; ++k) {
arr[k] += arr[k + 1];
}
}
if (sum == arr[0]) {
return true;
} else {
return false;
}
}
int main() {
int n, sum;
cin >> n >> sum;
vector<int>arr(n);
for (int i = 0; i < n; ++i) {
arr[i] = i + 1;
}
do {
if (Judge(arr, sum, n)) {
for (int i = 0; i < n; ++i) {
cout << arr[i] << ' ';
}
break;
}
} while (next_permutation(arr.begin(), arr.end()));
return 0;
}