本地安装gpu版本torch(超简单)

1)创建并激活环境

conda create -n DOT1 python==3.9
conda activate DOT1

2)方法1:命令行安装torch

① 查看cuda版本【12.6】

nvidia-smi        # 查看电脑支持的cuda版本

nvcc -V        # 查看安装的cuda版本

② 去pytorch官网找命令

pytorch官网PyTorch

③ 直接输入图中命令:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126

3)方法2:本地安装

① 输入命令

pip3 install torch
### 安装特定版本的 PyTorch 库 对于安装指定版本的 PyTorch,如2.6.0版本,可以通过 `pip` 工具来实现。需要注意的是,在撰写本文时,PyTorch 的稳定版可能并非2.6.0;这可能是假设性的版本号或者是对现有版本的一个误解。通常情况下,安装具体版本Python 包是通过在命令中指明版本号完成的。 为了安装特定版本的 PyTorch,可以使用如下命令: ```bash pip install torch==2.6.0 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 上述命令尝试安装 PyTorch 及其相关组件的具体版本 2.6.0[^1]。然而,如果该版本确实不存在于 PyTorch 提供的仓库中,则会遇到错误提示无法找到满足条件的包。此时建议访问官方网站或 GitHub 发布页确认所需的确切版本是否存在以及具体的安装指令是否有特殊说明。 当涉及到 TensorFlow 或其他机器学习框架的相关依赖项安装时,比如 Eigen 和 Protobuf,这些通常是作为构建工具链的一部分自动处理或是由预编译二进制文件提供支持,而不需要手动干预去单独安装它们以配合 PyTorch 使用[^2]。 对于希望基于 facenet-pytorch 开展工作的开发者来说,确保所使用的 PyTorch 版本兼容是非常重要的。由于不同版本之间的 API 变化可能导致不兼容问题,所以最好查阅 facenet-pytorch 文档中的环境配置指南部分获取推荐的 PyTorch 版本信息[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值