2024年全国大学生数学建模B题-生产过程中的决策问题代码+思路+论文

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

🔥 内容介绍

某企业生产某种畅销的电子产品,需要分别购买两种零配件(零配件 1 和零配件 2),在企业将两个零配件装配成成品。在装配的成品中,只要其中一个零配件不合格,则成品一 定不合格;如果两个零配件均合格,装配出的成品也不一定合格。对于不合格成品,企业可以选择报废,或者对其进行拆解,拆解过程不会对零配件造成损坏,但需要花费拆解费用。请建立数学模型,解决以下问题:

问题 1 供应商声称一批零配件(零配件 1 或零配件 2)的次品率不会超过某个标称值。企业准备采用抽样检测方法决定是否接收从供应商购买的这批零配件,检测费用由企业自行承担。请为企业设计检测次数尽可能少的抽样检测方案。如果标称值为 10%,根据你们的抽样检测方案,针对以下两种情形,分别给出具体结果:

(1) 在 95%的信度下认定零配件次品率超过标称值,则拒收这批零配件;

(2) 在 90%的信度下认定零配件次品率不超过标称值,则接收这批零配件。

问题 2 已知两种零配件和成品次品率,请为企业生产过程的各个阶段作出决策:

(1) 对零配件(零配件 1 和/或零配件 2)是否进行检测,如果对某种零配件不检测,这种零配件将直接进入到装配环节;否则将检测出的不合格零配件丢弃;

(2) 对装配好的每一件成品是否进行检测,如果不检测,装配后的成品直接进入到市场;否则只有检测合格的成品进入到市场;

(3) 对检测出的不合格成品是否进行拆解,如果不拆解,直接将不合格成品丢弃;否则对拆解后的零配件,重复步骤(1)和步骤(2);

(4) 对用户购买的不合格品,企业将无条件予以调换,并产生一定的调换损失(如物流成本、企业信誉等)。对退回的不合格品,重复步骤(3)。请根据你们所做的决策,对表 1 中的情形给出具体的决策方案,并给出决策的依据及相应的指标结果。

问题 3 对 𝑚 道工序、𝑛 个零配件,已知零配件、半成品和成品的次品率,重复问题2,给出生产过程的决策方案。图 1 给出了 2 道工序、8 个零配件的情况,具体数值由表 2 给出。

针对以上这种情形,给出具体的决策方案,以及决策的依据及相应指标。

问题 4 假设问题 2 和问题 3 中零配件、半成品和成品的次品率均是通过抽样检测方法(例如,你在问题 1 中使用的方法)得到的,请重新完成问题 2 和问题 3。

附录 说明

(1) 半成品、成品的次品率是将正品零配件(或者半成品)装配后的产品次品率;

(2) 不合格成品中的调换损失是指除调换次品之外的损失(如:物流成本、企业信誉等)。

(3) 购买单价、检测成本、装配成本、市场售价、调换损失和拆解费用的单位均为元/件。

📣 赛题分析

难度: 高 适合专业: 工业工程、管理科学与工程、统计学、计算机科学等专业的学生适合解答这一题。特别是对生产管理、质量控制和决策分析有研究的学生。主要算法和模型: 1. 概率统计模型: 需使用抽样检验理论(如假设检验、置信区间)来判断是否接收配件。2. 决策模型: 可以使用决策树、动态规划等方法分析生产流程中的各个阶段决策。3. 优化模型: 可以应用整数规划、线性规划等优化算法来最小化成本和损失。4. 蒙特卡洛模拟: 针对不确定性进行模拟评估。

二、数学模型及分析

2.1 问题 1:零配件质量检验

假设供应商声称一批零配件的次品率不超过 p*。企业采用抽样检测方法,从这批零配件中随机抽取 n 个进行检测,设其中次品数量为 x。

  • 假设检验: 检验假设 H0:次品率 ≤ p*,备择假设 H1:次品率 > p*。

  • 检验统计量: x/n,服从二项分布 B(n, p*)。

  • 拒绝域: 当 x/n 大于某个临界值 c 时,拒绝 H0。

根据给定的置信水平 α,可以确定临界值 c。例如,在 95% 的信度下认定次品率超过 p*,即 α = 0.05,则拒绝域为 x/n > c,其中 c 满足 P(x/n > c | p* = p*) = 0.05。

2.2 问题 2:生产过程决策

2.2.1 决策变量

  • d1: 是否检测零配件 1,1 表示检测,0 表示不检测。

  • d2: 是否检测零配件 2,1 表示检测,0 表示不检测。

  • d3: 是否检测成品,1 表示检测,0 表示不检测。

  • d4: 是否拆解不合格成品,1 表示拆解,0 表示丢弃。

2.2.2 决策目标

  • 最小化生产成本,包括零配件采购成本、检测成本、装配成本、拆解成本、调换成本等。

  • 最大化产品质量,即最大限度地减少不合格品的产生。

2.2.3 决策约束

  • 零配件 1 和零配件 2 的次品率分别为 p1 和 p2。

  • 成品的次品率为 p3,其取决于零配件的质量和装配过程的质量。

  • 拆解不合格成品的成本为 c。

  • 用户购买不合格品的调换损失为 L。

2.2.4 决策模型

根据以上决策变量、目标和约束,可以建立如下决策模型:

 

min C = c1*d1 + c2*d2 + c3*d3 + c4*d4 + ...
s.t.
d1, d2, d3, d4 ∈ {0, 1}
...

其中,C 为总成本,c1、c2、c3、c4 分别为检测零配件 1、检测零配件 2、检测成品和拆解不合格品的成本,其他系数为相关成本系数。

2.3 问题 3:多道工序和多个零配件的决策问题

将问题 2 的决策模型推广到 𝑚 道工序、𝑛 个零配件的情况,可以得到一个多变量决策模型。决策变量包括每个零配件的检测决策、每道工序的检测决策、不合格品的处理决策等。决策目标仍然是最小化成本和最大化质量。

2.4 问题 4:抽样检测结果的不确定性

在问题 2 和问题 3 中,如果零配件、半成品和成品的次品率是通过抽样检测方法得到的,则需要考虑抽样检测结果的不确定性。可以使用置信区间来估计次品率的范围,并根据置信区间来进行决策。

三、案例分析

3.1 案例 1:问题 1 的应用

假设供应商声称一批零配件的次品率不超过 10%,企业准备在 95% 的信度下认定次品率超过标称值,则拒收这批零配件。

  • 检验方法: 采用单边检验,检验假设 H0:次品率 ≤ 0.1,备择假设 H1:次品率 > 0.1。

  • 样本量: 根据样本量公式,在 α = 0.05,p* = 0.1,置信区间为 0.05 的情况下,需要抽取 271 个样本。

  • 结果: 如果样本中次品率大于临界值 0.13,则拒绝 H0,拒收这批零配件。

3.2 案例 2:问题 2 的应用

假设已知零配件 1、零配件 2 和成品的次品率分别为 0.05、0.03 和 0.1,拆解不合格成品的成本为 5 元,用户购买不合格品的调换损失为 20 元。

决策方案:

  • 零配件 1 和零配件 2 均进行检测。

  • 成品进行检测。

  • 拆解不合格成品。

决策依据:

  • 零配件的次品率较高,检测能够有效降低后续环节的次品率。

  • 成品的次品率也较高,检测能够提高产品质量,降低调换损失。

  • 拆解不合格成品的成本低于调换损失,因此选择拆解。

指标结果:

  • 通过检测,可以有效降低成品的次品率,进而减少调换损失。

  • 通过拆解,可以回收部分零配件,降低生产成本。

🔗 参考代码

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值