✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统是现代社会赖以生存的重要基础设施,其稳定运行关乎国计民生。电力系统在运行过程中不可避免地会遭遇各种故障,例如短路、断线等。这些故障会瞬间扰乱系统的平衡状态,引发各发电机组的角速度差异,进而导致发电机转子相对转角发生变化,即所谓的“摆幅”。深入研究故障清除后的电力系统摆幅曲线,对于分析系统暂态稳定性、评估系统抗扰动能力、优化系统保护控制策略以及保障电网安全可靠运行具有至关重要的意义。本文旨在对模拟故障清除后电力系统的摆幅曲线进行系统性研究,探讨影响摆幅曲线的关键因素,分析不同故障类型和清除方式对摆幅特性的影响,并展望相关研究的发展方向。
引言
电力系统的稳定运行是保障电力供应连续性和可靠性的根本前提。然而,庞大的电网结构、复杂的设备连接以及不可预测的外部因素,使得电力系统面临着各种潜在的故障威胁。当故障发生时,系统的电气参数(如电压、电流)会发生突变,打破原有的功率平衡,导致发电机组受到不对称电磁力作用,转子加速或减速,从而引发转子角速度的偏差,并进一步导致转子相对位置发生变化。这种相对位置的变化在时域上表现为发电机转子相对于同步旋转坐标系的角位移随时间的变化,即摆幅曲线。
摆幅曲线直观地反映了故障清除后系统恢复稳定性的过程。通过分析摆幅曲线的峰值、振荡频率、阻尼特性以及稳定极限,可以判断系统在故障清除后能否恢复同步运行,即是否具有暂态稳定性。如果摆幅持续发散或超过某个临界值,系统将失去同步,发生功角失稳,可能导致大面积停电甚至系统崩溃。因此,对模拟故障清除后电力系统摆幅曲线进行深入研究,对于理解系统动态特性、评估系统稳定性裕度以及制定有效的预防和控制措施具有重要的理论和实践价值。
电力系统摆幅曲线的基本理论
电力系统的摆幅现象本质上是发电机转子在同步旋转磁场中的振荡过程。这种振荡可以用功角方程来描述。
故障清除后,系统的网络结构和运行参数发生改变,PePe恢复到新的平衡点附近。此时,发电机转子会围绕新的平衡功角进行振荡,其摆幅曲线的形态取决于故障前的运行状态、故障的类型和位置、故障持续时间以及故障清除后的系统结构和参数。
模拟故障清除后电力系统摆幅曲线的影响因素
模拟故障清除后电力系统的摆幅曲线受到多种因素的共同影响,主要包括:
-
故障类型和位置:不同类型的故障(如三相短路、两相短路、单相接地短路)对系统功率平衡的破坏程度不同,引起的电磁功率跌落幅度也不同。故障位置也会影响故障电流的大小以及故障对系统其他部分的影响范围,进而影响摆幅的剧烈程度和形态。一般来说,对系统影响越大的故障(如靠近发电机母线的三相短路),引起的摆幅越大。
-
故障持续时间:故障持续时间是影响暂态稳定性的关键因素。故障持续时间越长,发电机转子在故障期间积累的加速或减速能量越多,故障清除后摆幅的幅度越大,系统失稳的风险也越高。临界清除时间是判断系统暂态稳定性的重要指标,即在超过该时间后清除故障,系统将失稳。
-
故障清除方式:故障清除方式通常指断路器的动作速度和协调性。快速、准确的故障清除能够及时恢复系统功率平衡,减小转子功角的偏移,从而有效抑制摆幅。保护系统的可靠性和动作时间对摆幅曲线有直接影响。
-
系统运行方式:包括系统负荷水平、发电机出力分配、网络结构以及其他设备(如励磁系统、调速系统、FACTS设备)的运行状态。系统负荷越高,通常惯性常数相对较小,系统抗扰动能力越弱,摆幅可能越大。合理的发电机出力分配和网络结构有助于提高系统的暂态稳定性。
-
发电机特性:发电机的惯性常数、直轴和交轴暂态电抗、励磁系统和调速系统的参数等都会影响发电机对故障的响应以及故障清除后的摆幅特性。惯性常数越大,发电机对角速度变化的反应越慢,摆幅可能越平缓,但振荡周期可能更长。励磁系统和调速系统的快速响应和协调控制能够有效地抑制摆幅。
-
网络结构和参数:系统中线路的电抗、电阻、电纳,变压器的参数,以及联络线的传输能力等都对故障电流分布和功率传输能力有影响,从而影响摆幅曲线的形态。网络结构越强,传输能力越强,越有利于抑制摆幅。
模拟故障清除后电力系统摆幅曲线的研究方法
对模拟故障清除后电力系统摆幅曲线的研究主要依赖于电力系统仿真技术。常用的仿真工具包括PSCAD/EMTDC、DIgSILENT PowerFactory、BPA、PSS/E等。这些仿真工具能够对电力系统进行详细的建模,模拟不同类型的故障以及故障清除过程,并计算和绘制发电机转子功角随时间变化的曲线。
具体研究步骤通常包括:
-
电力系统建模:建立详细的电力系统模型,包括发电机、变压器、线路、负荷、保护系统等设备的模型,并设置相应的参数。模型的精度直接影响仿真结果的准确性。
-
故障场景设置:模拟不同类型的故障(如三相短路、两相短路等),设置故障位置和故障发生时间。
-
故障清除模拟:根据保护策略,模拟断路器动作,切除故障元件或线路,恢复系统正常或新的运行状态。故障清除时间是重要参数。
-
暂态稳定仿真:运行暂态稳定仿真程序,计算故障发生和清除后发电机转子功角随时间变化的曲线。
-
摆幅曲线分析:分析绘制出的摆幅曲线,提取关键特征,如最大功角偏差、振荡频率、阻尼系数等。
-
参数影响分析:通过改变故障类型、位置、持续时间、清除方式、系统运行方式、设备参数等,重复仿真步骤,分析不同因素对摆幅曲线的影响。
-
稳定性评估:根据摆幅曲线的特性,评估系统在不同故障条件下的暂态稳定性裕度,判断是否满足稳定运行要求。
不同故障类型和清除方式对摆幅特性的影响
不同类型的故障对摆幅特性产生显著影响。三相短路是影响最为严重的故障类型,其引起的系统功率跌落幅度最大,导致发电机转子加速度最大,摆幅最剧烈。相间短路次之,单相接地短路影响相对较小。靠近发电机母线的故障对发电机的影响最为直接,引起的摆幅也最大。
故障清除方式,特别是故障清除时间,是决定系统能否恢复同步的关键因素。图1示出了在同一故障类型和位置下,不同故障清除时间对摆幅曲线的影响示意图。
图1:不同故障清除时间对摆幅曲线的影响示意图
(此处应插入示意图,图中应包含至少两条摆幅曲线,一条对应较短的故障清除时间,系统稳定;另一条对应较长的故障清除时间,系统失稳,功角持续发散)
从图1可以看出,故障清除时间越短,转子功角的最大偏差越小,振荡幅度越小,系统越容易恢复稳定。当故障清除时间超过临界清除时间时,摆幅将持续增大,系统失去同步。
保护系统的快速性和可靠性对于减小故障清除时间至关重要。先进的继电保护技术和快速动作的断路器能够有效地缩短故障持续时间,从而提高系统的暂态稳定性。此外,采用故障限流装置、动态无功补偿装置等设备也可以在故障发生和清除后提供附加的支撑,抑制摆幅。
摆幅曲线研究的应用与意义
对模拟故障清除后电力系统摆幅曲线的研究在电力系统规划、运行和控制中具有广泛的应用和重要意义:
-
暂态稳定性评估:通过仿真分析不同故障场景下的摆幅曲线,可以评估系统的暂态稳定性水平,判断系统在极端故障条件下的抗扰动能力,为系统规划和设计提供依据。
-
保护系统整定:摆幅曲线研究有助于优化继电保护装置的整定参数和动作逻辑。通过分析故障清除时间和系统响应之间的关系,可以确定合适的保护动作时间,确保故障及时可靠地清除。
-
安全稳定控制:摆幅曲线分析是安全稳定控制策略制定的重要基础。当检测到系统可能发生功角失稳时,可以采取紧急控制措施,如快速切机、切负荷、投入快速励磁等,以抑制摆幅,防止系统崩溃。摆幅曲线的预测和分析有助于确定控制措施的投入时机和强度。
-
系统运行风险评估:通过对历史故障事件的摆幅曲线进行分析,可以识别系统中的薄弱环节,评估不同运行方式下的暂态稳定风险,为运行人员提供决策支持。
-
新型设备性能评估:对于FACTS设备、储能系统等新型电力设备,可以通过仿真分析其在故障发生和清除后对摆幅曲线的影响,评估其提高系统暂态稳定性的效果。
研究展望
随着电力系统规模的不断扩大、新能源发电比例的持续增加以及交直流混联系统的发展,电力系统的动态特性日趋复杂,对摆幅曲线的研究提出了新的挑战和更高的要求。未来,模拟故障清除后电力系统摆幅曲线的研究可以从以下几个方面深化:
-
大规模复杂系统的高效仿真:随着系统规模的增大,传统时域仿真计算量巨大,需要开发更高效的仿真算法和并行计算技术,以满足大规模系统的实时仿真需求。
-
含新能源和储能系统的动态特性研究:新能源和储能设备的接入改变了系统的惯性常数和动态响应特性,需要研究其对摆幅曲线的影响,并开发相应的建模和仿真方法。
-
网络结构和运行方式优化:结合人工智能和优化算法,研究在不同运行方式下如何优化网络结构、发电机出力以及控制策略,以提高系统的暂态稳定性,减小摆幅。
-
基于数据驱动的摆幅预测和控制:利用大数据分析技术,从历史故障数据和仿真数据中提取特征,构建基于机器学习的摆幅预测模型,并开发基于预测结果的智能控制策略。
-
交直流混联系统的摆幅特性研究:直流输电系统的引入改变了系统的功率传输模式和动态特性,需要深入研究交直流混联系统在故障下的摆幅特性以及相应的稳定控制措施。
-
考虑不确定性的摆幅分析:电力系统的运行受到多种不确定因素(如负荷波动、新能源出力波动)的影响,需要研究在不确定性环境下对摆幅曲线进行概率性分析和风险评估。
结论
模拟故障清除后电力系统摆幅曲线是电力系统暂态稳定性研究的核心内容之一。通过对摆幅曲线的深入研究,可以全面了解系统在故障扰动下的动态响应过程,评估系统的暂态稳定性裕度,为系统规划、运行和控制提供重要的技术支撑。随着电力系统的不断发展和复杂化,对摆幅曲线的研究也面临着新的挑战和机遇。未来应继续深化研究,采用更先进的仿真技术、建模方法和分析工具,探索新的稳定增强措施,以保障电力系统的安全、稳定和可靠运行。
⛳️ 运行结果
🔗 参考文献
[1] 朱林,徐敏,陈裔生,等.一种改善电力系统暂态性能的轨迹跟踪控制策略[J].电力系统自动化, 2012, 36(14):6.DOI:CNKI:SUN:DLXT.0.2012-14-002.
[2] 吴霜毅.高速高精度采样/保持电路理论模型与技术实现[D].电子科技大学[2025-04-20].DOI:CNKI:CDMD:2.2007.100406.
[3] 胡庆刚.基于冗余镜像对称并联机构的摆动推进装置游动特性研究[D].哈尔滨工业大学,2015.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇