【漂移-扩散通量重建 FV 方案】用于半导体和气体放电模拟的电子传输的更准确的 Sharfetter-Gummel 算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在半导体器件和气体放电等离子体模拟中,准确地描述带电粒子(尤其是电子)的输运行为至关重要。电子在电场和浓度梯度驱动下的漂移-扩散运动是这些现象的核心。标准的有限体积 (Finite Volume, FV) 方法在离散化漂移-扩散方程时,由于中心差分对流项的处理,可能会在网格 Peclet 数较大时出现非物理振荡,导致数值不稳定性甚至无法收敛。为了克服这一挑战,Scharfetter-Gummel (SG) 算法应运而生,并在半导体器件模拟中取得了巨大成功。然而,对于某些复杂的模拟场景,如高电场、强非均匀网格或包含复杂边界条件的模拟,传统的 SG 算法可能仍然存在一定的局限性。本文将深入探讨一种基于漂移-扩散通量重建的 FV 方案,旨在为半导体和气体放电模拟中的电子传输提供一种更准确的 Sharfetter-Gummel 算法,并分析其原理、优势及潜在的应用前景。

Scharfetter-Gummel 算法:解决对流主导问题的先驱

Scharfetter-Gummel 算法是专门为解决漂移-扩散方程中对流主导问题而设计的。其核心思想不是直接离散电流密度中的密度梯度,而是假设在两个相邻网格点之间,电场是均匀的,并且电流密度是常数。基于这两个假设,可以推导出在稳态且无生成复合的情况下,两个相邻网格点之间的密度分布遵循指数律。利用这一指数律,可以在网格界面上精确地表示电流密度,避免了对密度梯度的直接中心差分。

漂移-扩散通量重建 FV 方案:进一步提升准确性

尽管传统的 SG 算法取得了巨大成功,但在更复杂的场景下,其假设(例如界面处电场均匀、电流密度常数)可能不再严格成立。这可能导致在某些区域,尤其是高电场梯度或强非均匀网格附近,出现数值误差。漂移-扩散通量重建 (Flux Reconstruction, FR) FV 方案旨在通过在单元内部或界面附近重建更准确的物理量(如电场、密度梯度或电流密度本身),从而改进传统的 SG 算法。

其基本思想是在每个控制体积内或其界面附近,利用相邻单元的信息,构造一个更高阶的多项式或其他函数来近似物理量的分布。然后,基于这个重建的分布,可以计算出更加准确的界面通量。将这种通量计算与 SG 算法相结合,可以保留 SG 算法的稳定性和对流主导情况下的准确性,同时在局部区域修正由于 SG 算法假设不严格导致的误差。

具体的通量重建方案可以有多种实现方式:

  1. 基于物理量的重建: 可以在单元内部重建电子密度、电场等物理量的高阶多项式近似。例如,利用单元中心值和相邻单元中心值,通过插值或最小二乘法构建一个局部高阶多项式。然后在界面上,利用这个高阶多项式来计算密度梯度或电场,进而计算电流密度。结合 SG 算法的指数律特性,可以在这个重建的场中应用 SG 形式。

  2. 基于电流密度的重建: 更直接的方法是在单元内部或界面附近重建电流密度本身的高阶近似。这可以通过求解一个局部问题或利用相邻单元的电流密度信息来实现。例如,可以利用相邻单元的电流密度值,通过某种插值或外推方法,得到界面处更精确的电流密度估计。然后,将这个估计的电流密度与 SG 算法的结构结合起来。

  3. 基于修正函数的重建: 可以构建一个修正函数,用于调整传统 SG 算法计算出的电流密度。这个修正函数可以根据局部电场梯度、网格非均匀性或其他影响 SG 算法精度的因素来确定。通过将 SG 电流密度与这个修正函数相结合,可以得到一个更准确的界面通量。

将通量重建思想应用于 SG 算法的关键在于,如何在保留 SG 算法对流项的指数律特性的同时,利用重建的物理量或通量来修正其扩散项或其他可能存在的误差源。一种可能的方法是,利用重建的物理量来计算界面处的有效扩散系数或有效迁移率,然后将其代入 SG 算法的形式中。另一种方法是,将 SG 算法视为一个基础通量,然后根据重建的信息添加一个修正通量项。

漂移-扩散通量重建 FV 方案的优势

与传统的 SG 算法相比,基于漂移-扩散通量重建的 FV 方案具有以下潜在优势:

  1. 提高准确性:

     通过利用局部信息构建更高阶的近似,可以更准确地描述物理量的分布,从而计算出更精确的界面通量,减少数值误差。这对于具有复杂几何、强电场梯度或高非均匀网格的模拟尤其重要。

  2. 增强对复杂场景的适应性:

     传统的 SG 算法对均匀电场和常数电流密度的假设在复杂场景下可能失效。通量重建方法通过局部修正,可以更好地适应这些非理想情况,提高算法的鲁棒性。

  3. 潜在的更高阶精度:

     通过采用更高阶的重建策略,理论上有可能获得更高阶的数值精度。虽然实际中实现高阶精度可能面临挑战,但在某些情况下,通过局部修正可以有效地提升整体精度。

  4. 与其他技术的结合:

     通量重建思想可以与其他数值技术相结合,例如自适应网格细化,进一步优化模拟的效率和精度。在关键区域进行局部通量重建,可以避免全局采用高阶方法带来的计算负担。

在气体放电模拟中的应用前景

尽管 SG 算法最初主要应用于半导体器件模拟,但漂移-扩散方程在气体放电等离子体模拟中也扮演着重要角色。气体放电中的电子输运受到电场和浓度梯度的共同影响,且通常伴随着复杂的电离、激发、复合等过程。在许多气体放电模拟中,电场可能存在剧烈的变化,网格也可能高度非均匀,这使得传统的数值方法面临挑战。

将基于漂移-扩散通量重建的 FV 方案应用于气体放电模拟,可以为准确描述电子输运提供新的可能性:

  1. 高电场区域的准确模拟:

     在气体放电中,特别是在电极附近或放电通道内,电场可能非常强。通量重建可以更准确地处理这些高电场区域的电子漂移,提高模拟结果的可信度。

  2. 非均匀网格的适应性:

     气体放电模拟通常需要在放电核心区采用细网格,而在外部采用粗网格。通量重建方法可以更好地处理这种网格的非均匀性,避免在网格过渡区域产生较大的数值误差。

  3. 复杂边界条件的处理:

     气体放电通常涉及复杂的边界条件,例如电子在电极表面的发射和吸收。准确地计算边界处的电子通量对于模拟的准确性至关重要。通量重建可以帮助更精确地处理这些边界处的通量。

  4. 与化学反应的耦合:

     气体放电模拟中,电子输运与多种化学反应(如电离、附着、复合等)紧密耦合。准确的电子密度和电流密度分布是计算这些反应速率的基础。通量重建方案可以为这些反应提供更可靠的输入。

挑战与展望

尽管漂移-扩散通量重建 FV 方案具有显著的潜力,但在实际应用中仍存在一些挑战:

  1. 重建方法的选择和实现:

     如何选择合适的重建函数形式、重建区域以及如何有效地计算重建系数是关键问题。不同的重建方法对计算成本和精度有不同的影响。

  2. 多维问题的复杂性:

     将一维的通量重建思想推广到二维或三维会增加复杂性,需要考虑单元的形状、相邻单元的关系以及多维物理量的重建。

  3. 计算成本的增加:

     与简单的传统 SG 算法相比,通量重建通常会增加计算量,因为需要进行额外的重建计算。需要在精度提升和计算效率之间进行权衡。

  4. 与其他物理过程的耦合:

     在气体放电等模拟中,电子输运与其他物理过程(如离子输运、中性粒子输运、电场计算、能量方程等)相互耦合。如何将通量重建方案与其他耦合方程的求解器有效地集成是一个重要的研究方向。

尽管存在这些挑战,基于漂移-扩散通量重建的 FV 方案代表了改进 Sharfetter-Gummel 算法的一个重要方向。未来的研究可以聚焦于开发更高效、鲁棒和易于实现的重建方法,将其推广到多维复杂几何,并与其他物理过程的求解器进行有效的耦合。

结论

在半导体器件和气体放电模拟中,准确模拟电子的漂移-扩散输运至关重要。传统的有限体积方法在处理对流主导问题时面临挑战,而 Sharfetter-Gummel 算法通过利用指数律特性有效地解决了这一问题。然而,在更复杂的模拟场景下,传统的 SG 算法可能存在局限性。

本文提出的基于漂移-扩散通量重建的 FV 方案,通过在单元内部或界面附近重建物理量或电流密度,旨在为半导体和气体放电模拟中的电子传输提供一种更准确的 Sharfetter-Gummel 算法。这种方案的优势在于提高准确性、增强对复杂场景的适应性、潜在的更高阶精度以及与其他技术的结合。尤其是在气体放电模拟中,该方案在高电场区域、非均匀网格和复杂边界条件下的应用前景广阔。

虽然实现通量重建方案仍面临一些挑战,但其为提高漂移-扩散方程数值求解的准确性和鲁棒性提供了有力的工具。随着计算能力的不断提升和数值方法的不断发展,基于漂移-扩散通量重建的 Sharfetter-Gummel 算法有望在半导体器件设计、等离子体物理研究以及相关工程应用中发挥越来越重要的作用。未来的研究将继续探索更优化的重建策略,以克服现有挑战,充分释放该方法的潜力。

⛳️ 运行结果

🔗 参考文献

[1] 尹文言,李谭毅,詹启伟,等.一种模拟MOSFET器件总剂量效应的高性能仿真方法:CN202210087729.1[P].CN202210087729.1[2025-04-24].

[2] 耿艳霞.彩色PDP光电特性的二维流体模拟研究[D].西安交通大学,2003.

[3] 郭俊利.彩色等离子体显示器件放电特性的二维流体模拟研究[D].西安交通大学,2002.DOI:10.7666/d.Y454077.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值