【最优PID 整定】PID性能指标(ISE,IAE,ITSE和ITAE)优化、稳定性裕量附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

比例-积分-微分 (PID) 控制器自其诞生以来,因其结构简单、易于理解和实现,在工业控制领域占据着不可替代的地位。然而,一个PID控制器的性能并非仅取决于其存在与否,更关键在于其参数(比例增益 KpKp,积分时间 TiTi,微分时间 TdTd)的选取。对这些参数进行“整定”,使其能够使系统达到最优性能,是控制工程领域的核心课题之一。最优PID整定是一个复杂的过程,它需要平衡系统对设定值的快速响应、消除稳态误差的能力、抑制扰动的能力以及系统的稳定性。为了量化和评估控制器的性能,引入了多种性能指标。同时,系统的稳定性是任何控制系统设计的基础,稳定性裕量则提供了衡量系统稳定性的定量指标。本文旨在深入探讨PID控制器整定中的核心问题,即如何在优化诸如积分平方误差 (ISE)、积分绝对误差 (IAE)、积分时间加权平方误差 (ITSE) 和积分时间加权绝对误差 (ITAE) 等性能指标的同时,确保并提升系统的稳定性裕量。

一、PID控制原理回顾

在深入讨论性能指标和稳定性裕量之前,有必要简要回顾PID控制器的基本原理。

  • 比例项 (KpKp):

     响应当前误差,误差越大,控制作用越强。但过大的 KpKp 容易引起超调和振荡。

  • 积分项 (KiKi):

     消除稳态误差,对过去误差进行累积,当误差长时间存在时,积分作用会逐渐增强。但过大的 KiKi 会降低系统响应速度,甚至引起积分饱和。

  • 微分项 (KdKd):

     预测误差变化趋势,对未来误差进行预测补偿。可以抑制超调,加快系统响应。但对噪声敏感,过大的 KdKd 会放大噪声。

二、PID控制性能指标

为了量化和比较不同PID参数对系统性能的影响,引入了各种性能指标。这些指标通常基于误差信号 e(t)e(t) 在一段时间内的积分,旨在衡量系统的响应速度、平稳性、以及对稳态误差的消除能力。以下是几种常用的时域性能指标:

  1. 积分平方误差 (ISE, Integral of Squared Error):

    ISE=∫0∞e2(t)dt

    ISE 对大误差的惩罚更重,因此能够有效地抑制超调。它通常用于要求快速收敛且对大误差敏感的系统。优化ISE往往会产生一个响应速度较快但可能伴随少量超调的系统。

  2. 积分绝对误差 (IAE, Integral of Absolute Error):

    IAE=∫0∞∣e(t)∣dt

    IAE 对误差的惩罚是线性的,无论误差大小。它侧重于减小总体的误差累积量。相比ISE,IAE对小误差也同样敏感,因此能够更有效地减小稳态误差。优化IAE通常会产生一个相对平稳,且稳态误差较小的系统。

  3. 积分时间加权平方误差 (ITSE, Integral of Time-weighted Squared Error):

    ITSE=∫0∞te2(t)dt

    ITSE 在误差信号中引入了时间权重 tt,随着时间的推移,对误差的惩罚会增加。这意味着ITSE对系统在较晚时刻的误差更为敏感。优化ITSE能够有效地抑制系统响应后期的振荡,使系统尽快稳定下来。它通常适用于要求快速稳定且对后期误差敏感的系统。

  4. 积分时间加权绝对误差 (ITAE, Integral of Time-weighted Absolute Error):

ITAE=∫0∞t∣e(t)∣d

  1. 与ITSE类似,ITAE也引入了时间权重,但惩罚的是绝对误差。ITAE对系统在较晚时刻的误差累积更为敏感。优化ITAE通常能够产生一个具有良好瞬态响应,且快速消除稳态误差的系统。在实践中,ITAE常常被认为是一个综合性能较好的指标,因为它同时考虑了响应速度(时间加权)和稳态误差(绝对误差)。

三、稳定性裕量

在追求最优性能指标的同时,系统的稳定性是必须优先考虑的。稳定性裕量是衡量系统鲁棒性的重要指标,它反映了系统在多大程度上能够承受开环增益和相位的变化而不失稳。常用的稳定性裕量指标包括:

    在控制系统设计中,我们不仅需要确保系统稳定,更需要保证一定的稳定性裕量,以应对实际系统中可能存在的模型不确定性、外部扰动、以及参数变化等因素。

    四、性能指标优化与稳定性裕量的权衡

    最优PID整定的核心挑战在于如何在优化性能指标(如最小化ISE,IAE,ITSE,ITAE)的同时,满足所需的稳定性裕量要求。这通常是一个权衡的过程,因为过度追求某一性能指标可能会牺牲稳定性裕量,反之亦然。

    • 提高响应速度(例如,通过增加 KpKp 或 KdKd): 通常会使性能指标如ISE和IAE减小,因为系统能够更快地接近设定值。然而,过快的响应可能会导致超调和振荡,从而可能降低增益裕量和相位裕量,甚至导致系统失稳。

    • 减小稳态误差(例如,通过增加 KiKi): 有助于减小IAE和ITAE。但过大的积分作用可能导致系统响应变得迟钝,出现积分饱和,并可能恶化系统的动态性能和稳定性。

    • 抑制超调(例如,通过增加 KdKd): 有助于减小ISE和ITSE。然而,过大的微分作用会放大噪声,并可能导致系统对高频信号过于敏感,从而降低系统的鲁棒性。

    因此,最优PID整定不是简单地追求某个性能指标的最小值,而是在满足一定的稳定性裕量约束下,寻找使某一或多个性能指标达到最优的参数组合。这通常需要通过以下方法来实现:

    1. 基于解析方法的整定: 针对简单的系统模型(如一阶或二阶系统),可以通过解析方法推导出使某些性能指标最优的PID参数。然而,这种方法对模型精度要求较高,且难以处理复杂系统。

    2. 基于经验公式的整定: 例如Ziegler-Nichols方法,通过实验或仿真确定系统的临界增益和临界周期,然后根据经验公式计算PID参数。这种方法简单易行,但得到的参数不一定是最优的,且对不同系统效果差异较大。

    3. 基于优化算法的整定: 将PID整定转化为一个优化问题,以某个性能指标为目标函数,以稳定性裕量为约束条件,利用遗传算法、粒子群算法、模拟退火等优化算法搜索最优参数。这种方法能够找到全局或局部最优解,适用于复杂系统,但计算量较大。

    4. 基于模型的整定: 通过系统辨识建立精确的系统模型,然后利用控制理论设计方法(如根轨迹法、Bode图法、Nyquist图法)在满足稳定性裕量要求的前提下进行PID参数设计。这种方法理论基础扎实,设计过程可视化,但对模型精度要求较高。

    5. 在线自适应整定: 对于参数时变或存在不确定性的系统,可以通过在线调整PID参数来适应系统的变化。这需要引入参数估计或模型参考自适应控制等技术。

    在实际应用中,选择哪种整定方法取决于系统的特性、可用的资源以及对性能要求的严格程度。通常,工程师会结合多种方法进行整定,并通过仿真和实际系统调试来验证和优化参数。

    五、提升稳定性裕量的方法与策略

    除了通过合理的PID参数整定来平衡性能和稳定性,还可以考虑以下策略来提升系统的稳定性裕量:

    1. 改进被控对象: 在条件允许的情况下,对被控对象进行物理上的改进,例如减少时延、提高阻尼等,可以从根本上提升系统的稳定性。

    2. 引入前馈控制: 前馈控制能够根据设定值的变化预测性地施加控制作用,从而减少误差信号,降低对反馈控制器的依赖,有助于提高系统的动态性能和稳定性裕量。

    3. 采用更高级的控制算法: 对于复杂的系统,可以考虑采用模型预测控制 (MPC)、模糊控制、神经网络控制等更高级的控制算法,它们通常能够更好地处理非线性、耦合和约束等问题,从而实现更好的性能和稳定性。

    4. 滤波器设计: 在控制回路中引入合适的滤波器,例如低通滤波器,可以滤除高频噪声,减少微分作用对噪声的放大,从而提高系统的鲁棒性和稳定性裕量。然而,滤波器会引入额外的相移,需要谨慎设计。

    5. 鲁棒控制设计: 专门针对存在模型不确定性的系统设计鲁棒控制器,以保证在一定范围内的参数变化下系统仍然能够稳定运行并满足性能要求。

    六、结论

    最优PID整定是控制工程中的一项重要任务,其核心在于在满足系统稳定性要求的前提下,通过合理选取比例、积分和微分参数来优化系统的性能指标。ISE,IAE,ITSE和ITAE等性能指标提供了量化系统响应特性的手段,而增益裕量和相位裕量则提供了衡量系统稳定鲁棒性的定量指标。在实际整定过程中,性能指标的优化与稳定性裕量的保证通常是一个相互制约、需要权衡的过程。通过多种整定方法的综合运用,以及采取提升稳定性裕量的策略,可以在保证系统稳定可靠运行的基础上,最大程度地提升系统的控制性能。未来的研究可以进一步探索基于机器学习和人工智能的自适应最优PID整定方法,以应对更复杂、动态变化的工业过程控制需求。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 张美娜,林相泽,丁永前,等.基于性能指标的农用车辆路径跟踪控制器设计[J].农业工程学报, 2012, 28(9):7.DOI:10.3969/j.issn.1002-6819.2012.09.007.

    [2] 郑国良,王杰.交流伺服系统无超调最优PID控制器设计[J].微电机, 2013, 46(2):4.DOI:10.3969/j.issn.1001-6848.2013.02.008.

    [3] 毛耀,刘超.一种延时系统中的PID控制器参数整定方法:CN202310053702.5[P].CN115963722A[2025-05-03].

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值