模拟雷达测量并使用它们通过数字信号处理 (DSP) 检测目标 FMCW 波形生成 快速傅里叶变换 (FFT) 距离多普勒地图 CFAR 可视化研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文深入探讨了如何利用数字信号处理(DSP)技术模拟雷达测量,并基于这些模拟数据进行目标检测。研究涵盖了调频连续波(FMCW)雷达的波形生成、快速傅里叶变换(FFT)在信号处理中的应用、距离多普勒(RD)地图的构建及其在目标定位和速度估计中的作用,以及恒虚警率(CFAR)算法在自适应目标检测中的原理和可视化研究。通过对这些关键环节的详细阐述和模拟实验的分析,本文旨在为理解和实践基于DSP的雷达目标检测提供一个全面的视角,并探讨其在实际应用中的潜力与挑战。

引言

雷达技术作为现代传感技术的重要组成部分,在军事、交通、气象、工业自动化等领域发挥着不可替代的作用。传统的雷达系统依赖于模拟电路实现信号的发射、接收和处理,其灵活性和处理能力受到限制。随着数字信号处理技术的飞速发展,基于DSP的雷达系统展现出巨大的优势,包括更高的灵活性、可编程性、抗干扰能力以及复杂信号处理算法的应用。

本文的核心在于模拟雷达测量的过程,并通过DSP技术对模拟信号进行处理,最终实现目标的检测。选择FMCW雷达作为研究对象是因为其在近程和中程目标探测方面具有较高的距离分辨率和速度分辨率,且结构相对简单,适用于模拟研究。通过模拟FMCW波形的生成,可以模拟雷达发射信号的特性;通过模拟目标对雷达信号的反射和接收,可以获得模拟的雷达回波信号;最后,利用DSP技术对回波信号进行处理,提取目标信息。

本文将围绕以下几个关键步骤展开论述:

  1. FMCW波形生成模拟:

     模拟FMCW雷达的发射信号,理解其线性调频特性。

  2. 雷达回波信号模拟:

     模拟目标对FMCW波形的反射,并考虑距离、速度和噪声等因素对回波信号的影响。

  3. 数字信号处理基础:

     简要回顾DSP在雷达信号处理中的作用,重点介绍FFT在频率分析中的应用。

  4. FFT在距离和多普勒估计中的应用:

     阐述如何利用FFT对回波信号进行处理,提取目标的距离和多普勒信息。

  5. 距离多普勒地图构建:

     详细介绍如何构建距离多普勒(RD)地图,并分析其在目标可视化和参数估计中的意义。

  6. CFAR算法原理与实现:

     探讨恒虚警率(CFAR)算法的基本原理,介绍几种常见的CFAR算法,并讨论其在自适应目标检测中的作用。

  7. CFAR可视化研究:

     通过模拟实验,可视化展示不同CFAR算法的检测效果,分析其性能差异。

  8. 总结与展望:

     总结本文的研究内容,并对未来基于DSP的雷达目标检测研究方向进行展望。

通过以上章节的论述,本文旨在提供一个系统性的框架,用于理解和实践基于DSP的模拟雷达目标检测。

第一章 FMCW波形生成模拟

FMCW雷达是一种连续波雷达,其发射信号的频率随时间线性变化。这种线性调频特性是实现高距离分辨率的关键。

模拟FMCW波形可以通过在离散时间点生成上述连续时间信号的采样值来实现。例如,在MATLAB或Python等编程环境中,可以使用循环或矢量化操作来生成一系列代表FMCW波形的数字样本。生成过程中需要确保采样率足够高,以避免信号失真。

模拟生成FOW波形的目的是为了后续模拟雷达回波信号提供基础。通过改变上述参数,可以研究不同FMCW波形对雷达性能的影响。

第二章 雷达回波信号模拟

雷达回波信号是雷达接收到的由目标反射回来的发射信号。回波信号的特性包含了目标的关键信息,如距离、速度、方位角和 RCS(雷达散射截面积)。在模拟雷达回波信号时,我们需要考虑以下几个主要因素:

  1. 目标距离 (RR):

     目标距离决定了回波信号的时延。对于距离为 RR 的目标,回波信号相对于发射信号的时延为 τ=2Rc。

  2. 目标速度 (vv):

     目标速度会引起回波信号的多普勒频移。对于径向速度为 vv 的目标,多普勒频移为,其中 λλ 是雷达信号波长。

  3. 目标 RCS:

     目标 RCS 反映了目标对雷达信号的反射能力,影响回波信号的幅度。

  4. 路径损耗:

     雷达信号在传播过程中会发生衰减,衰减程度与距离有关。通常遵循 $1/R^4$ 的衰减规律(双程传播)。

  5. 噪声:

     雷达接收到的信号不可避免地包含各种噪声,如热噪声、地面杂波、大气噪声等。在模拟中通常将噪声建模为加性高斯白噪声(AWGN)。

  6. 多目标情况:

     在实际场景中,雷达通常会探测到多个目标。模拟时需要考虑多个目标的叠加回波。

在模拟雷达回波时,我们需要:

  • 定义目标的位置、速度和 RCS。

  • 计算每个目标对应的时延和多普勒频移。

  • 根据雷达方程计算回波信号的幅度。

  • 将多个目标的回波信号叠加。

  • 加入具有特定信噪比(SNR)的噪声。

通过模拟不同目标场景(单个目标、多个目标、不同速度、不同距离),可以生成用于后续DSP处理的模拟雷达数据。

第三章 数字信号处理基础

数字信号处理(DSP)是利用数字处理器对离散时间信号进行处理的技术。在雷达信号处理中,DSP发挥着至关重要的作用,可以将模拟回波信号转换为数字信号,并进行各种复杂的处理算法,从而提取目标信息。

雷达信号处理的关键步骤包括:

  • 模数转换(ADC):

     将接收到的模拟回波信号转换为数字序列。ADC的采样率和分辨率直接影响后续处理的精度。

  • 数字下变频(DDC):

     将高频数字信号转换为较低的基带或中频信号,以便于后续处理。

  • 匹配滤波:

     通过与发射信号的复共轭进行卷积,最大化信噪比,提高目标检测能力。对于FMCW雷达,匹配滤波通常在频域进行。

  • 傅里叶变换:

     将时域信号转换为频域信号,用于分析信号的频率成分。快速傅里叶变换(FFT)是离散傅里叶变换(DFT)的高效计算方法,在雷达信号处理中被广泛应用。

  • 脉冲压缩:

     对于脉冲雷达,通过匹配滤波实现脉冲压缩,提高距离分辨率。对于FMCW雷达,虽然是连续波,但差拍信号的处理也可以看作是一种类似脉冲压缩的过程。

  • 目标检测:

     基于处理后的信号数据,采用特定的算法判断是否存在目标。

  • 参数估计:

     估计检测到的目标的距离、速度、方位角等参数。

本文重点关注FFT在FMCW雷达信号处理中的应用。FFT能够高效地计算信号的离散频谱,从而揭示信号中不同频率分量的强度。在FMCW雷达中,差拍信号的频率包含了距离信息,多普勒频移则影响了差拍信号的频率。通过对差拍信号进行FFT,可以分析其频率成分,进而提取距离信息。为了解耦距离和多普勒信息,通常需要对多个扫频周期的数据进行处理。

第四章 FFT在距离和多普勒估计中的应用

FMCW雷达通常采用“距离-多普勒”处理方法来同时估计目标的距离和速度。该方法的核心思想是利用多个扫频周期(脉冲)的数据,通过二维FFT来实现距离和多普勒的解耦。

处理流程如下:

  1. 采集多个扫频周期的差拍信号:

     对于每个扫频周期,对接收到的回波信号与发射信号进行混频和低通滤波,得到差拍信号的数字样本序列。将多个扫频周期的差拍信号组织成一个矩阵,通常将每个扫频周期的样本作为一行,不同的扫频周期作为列。这个矩阵可以称为“原始数据矩阵”或“时域-慢时间矩阵”。

  2. 距离FFT(快时间FFT):

     对原始数据矩阵的每一行(即每个扫频周期的差拍信号序列)进行FFT。由于差拍信号的频率与目标距离相关,对每行进行FFT后,在频域上可以观察到与目标距离对应的频率峰值。这个FFT称为“快时间FFT”,因为它是在一个扫频周期内完成的,而扫频周期通常较短,对应于“快时间”维度。经过距离FFT后,我们得到一个“距离单元-慢时间”矩阵,其中每一列代表一个距离单元在不同扫频周期下的信号强度。

  3. 多普勒FFT(慢时间FFT):

     对“距离单元-慢时间”矩阵的每一列(即每个距离单元在不同扫频周期下的信号序列)进行FFT。由于多普勒频移在多个扫频周期内表现为相位变化,对每列进行FFT后,在频域上可以观察到与目标多普勒频移对应的频率峰值。这个FFT称为“慢时间FFT”,因为它是在多个扫频周期之间完成的,而扫频周期之间的时间间隔相对较长,对应于“慢时间”维度。

经过两级FFT处理后,我们得到了一个“距离单元-多普勒单元”矩阵,通常称为距离多普勒(RD)地图。RD地图的横轴代表多普勒频率(或速度),纵轴代表距离。地图上的峰值表示在该距离和速度处存在目标。

通过分析RD地图上的峰值位置,可以估计目标的距离和速度。距离可以通过峰值所在的距离单元索引乘以距离分辨率来计算。速度可以通过峰值所在的多普勒单元索引乘以多普勒分辨率来计算。多普勒分辨率与扫频周期之间的相干处理时间(即用于慢时间FFT的扫频周期数)有关。

在实际应用中,需要对RD地图进行进一步处理,例如幅度归一化、旁瓣抑制等,以提高目标检测性能。

第五章 距离多普勒地图构建

距离多普勒(RD)地图是FMCW雷达信号处理中最重要的输出之一。它直观地展示了在不同距离和速度下信号的能量分布,为目标检测和参数估计提供了基础。

构建RD地图的具体步骤如下:

  1. 数据预处理:

     对原始差拍信号进行必要的预处理,例如去直流、窗函数加权等。去直流可以去除零频分量,避免对零速目标检测的影响。窗函数加权可以抑制FFT的旁瓣,提高距离和多普勒分辨率。

  2. 距离FFT:

     对每个扫频周期的差拍信号序列进行N点FFT,其中N通常是2的幂次方,大于等于每个扫频周期的样本数。FFT的输出是复数,通常取其幅值或功率谱密度来表示信号强度。

  3. 多普勒FFT:

     将距离FFT的结果按照距离单元组织成矩阵,然后对每个距离单元在多个扫频周期下的信号序列进行M点FFT,其中M是用于慢时间处理的扫频周期数,通常也是2的幂次方。多普勒FFT的输出也是复数,同样取其幅值或功率谱密度。

  4. 构建RD地图:

     将多普勒FFT的结果按照距离单元和多普勒单元组织成二维矩阵。这个矩阵就是RD地图。矩阵元素的幅值或功率表示在该距离和速度处的目标信号强度。

RD地图的可视化是理解雷达探测结果的关键。通常将RD地图以热力图的形式展示,颜色深浅代表信号强度的大小。通过观察RD地图上的峰值,可以识别出目标的存在,并估计其距离和速度。

RD地图的解读:

  • 峰值位置:

     峰值所在的距离单元和多普勒单元对应于目标的大致距离和速度。

  • 峰值高度:

     峰值的高度反映了目标的RCS、距离和噪声水平等因素。目标越强,距离越近,峰值通常越高。

  • 旁瓣:

     FFFT固有的旁瓣可能会在RD地图上产生虚假的峰值,需要通过窗函数或旁瓣抑制算法来处理。

  • 模糊:

     如果多普勒频率超过了多普勒不模糊范围,或者目标距离超过了距离不模糊范围,可能会在RD地图上出现模糊峰值。

通过对RD地图的分析,可以初步判断目标的存在和基本参数。然而,简单地根据阈值判断峰值是否是真实目标是不够的,尤其是在存在噪声和杂波的环境中。这就需要更高级的目标检测算法,例如CFAR算法。

第六章 CFAR算法原理与实现

恒虚警率(CFAR)算法是一种自适应目标检测算法,其目标是在不同噪声和杂波背景下保持恒定的虚警率。传统的基于固定阈值的检测方法在背景环境变化时,虚警率会随之变化,影响雷达的性能。CFAR算法通过估计局部背景噪声或杂波的功率水平,并根据该估计值动态调整检测阈值,从而实现恒定的虚警率。

CFAR算法的基本原理是:对于RD地图中的每一个待检测单元(Cell Under Test, CUT),在其周围选择一个参考单元区域(Reference Window)来估计背景噪声/杂波的功率,然后在参考单元区域之外选择一个保护单元区域(Guard Window)来避免将目标旁瓣误判为噪声。

常见的CFAR算法包括:

  1. 单元平均CFAR(CA-CFAR):

     这是最基本的CFAR算法。它将参考单元区域内的所有单元的功率进行平均,作为背景噪声的估计值。然后,将该估计值乘以一个预设的阈值因子(Threshold Factor),得到检测阈值。如果CUT的功率大于该阈值,则认为存在目标。CA-CFAR在均匀背景下表现良好,但在存在离散干扰源或边缘杂波时性能会下降。

  2. 有序统计CFAR(OS-CFAR):

     OS-CFAR是对CA-CFAR的改进,旨在提高在非均匀背景下的性能。它将参考单元区域内的单元功率按升序排列,然后选择第k个序统计量作为背景噪声的估计值。通过选择合适的k值,OS-CFAR可以在一定程度上抑制离散干扰源的影响。

  3. 平均值最大CFAR(GO-CFAR):

     GO-CFAR将参考单元区域分为左右两个子区域,分别计算它们的平均功率,然后取两个平均值中的最大值作为背景噪声的估计值。GO-CFAR适用于存在边缘杂波的场景,可以避免将边缘杂波误判为目标。

  4. 平均值最小CFAR(SO-CFAR):

     SO-CFAR与GO-CFAR类似,只是取两个子区域平均功率中的最小值作为背景噪声的估计值。SO-CFAR适用于存在多个强干扰源的场景,可以更好地抑制强干扰。

CFAR算法的实现需要确定以下参数:

  • 参考单元区域大小:

     决定了用于估计背景噪声的单元数量。区域越大,估计越平滑,但可能包含目标信息。

  • 保护单元区域大小:

     决定了需要排除目标旁瓣的区域。保护区域越大,旁瓣抑制效果越好,但可能漏检靠近强目标的弱目标。

  • 阈值因子:

     控制虚警率的关键参数。阈值因子越大,虚警率越低,但可能漏检弱目标;阈值因子越小,虚警率越高,检测概率越高。

在实现CFAR算法时,需要对RD地图进行滑动窗口操作。对于RD地图中的每一个单元,以其为CUT,在其周围定义参考单元区域和保护单元区域,然后根据所选的CFAR算法计算检测阈值,并与CUT的功率进行比较。

第七章 CFAR可视化研究

CFAR算法的性能与背景环境、算法类型和参数设置密切相关。通过可视化研究,可以直观地了解不同CFAR算法在不同场景下的检测效果,并分析参数设置对检测性能的影响。

可视化研究可以包括以下方面:

  • RD地图展示:

     展示经过距离和多普勒FFT处理后的RD地图,直观地呈现目标和背景信号的分布。

  • CFAR检测结果叠加:

     在RD地图上叠加CFAR算法的检测结果。通常用一个标记(例如圆圈或方框)来表示检测到的目标位置。

  • 不同算法对比:

     在相同的模拟场景下,使用不同的CFAR算法进行检测,并将检测结果进行对比,观察不同算法对虚警和漏检的影响。

  • 参数敏感性分析:

     固定CFAR算法,改变参考单元区域大小、保护单元区域大小和阈值因子等参数,观察检测结果的变化,分析参数对虚警率和检测概率的影响。

  • 背景环境变化的影响:

     模拟不同类型的背景环境(例如均匀噪声、边缘杂波、离散干扰源),并使用CFAR算法进行检测,观察算法在不同背景下的鲁棒性。

  • 虚警率和检测概率曲线(ROC曲线):

     在不同的信噪比或背景环境下,计算不同阈值因子对应的虚警率和检测概率,绘制ROC曲线,定量评估算法性能。

通过可视化研究,可以更深入地理解CFAR算法的工作原理和性能特点,为实际应用中的算法选择和参数优化提供指导。例如,在存在强干扰源的环境中,OS-CFAR或SO-CFAR可能比CA-CFAR具有更好的性能。在对虚警率要求极高的场景下,需要选择较大的阈值因子。

进行CFAR可视化研究的步骤通常包括:

  1. 模拟雷达场景:

     生成包含目标和不同背景环境的模拟雷达回波数据。

  2. 进行FFT处理:

     对模拟回波数据进行距离和多普勒FFT处理,构建RD地图。

  3. 应用CFAR算法:

     在RD地图上应用所选的CFAR算法进行目标检测。

  4. 可视化结果:

     将RD地图和检测结果进行可视化展示,并进行分析。

通过大量的模拟实验和可视化分析,可以获得对CFAR算法在不同条件下性能的深入理解。

总结与展望

本文系统地探讨了如何利用数字信号处理技术模拟雷达测量并进行目标检测。研究涵盖了FMCW波形生成、快速傅里叶变换、距离多普勒地图构建以及恒虚警率(CFAR)算法的应用和可视化研究。通过对这些关键环节的详细阐述,本文为理解和实践基于DSP的雷达目标检测提供了一个全面的框架。

主要研究内容总结:

  • 成功模拟了FMCW雷达的发射波形,并考虑了扫频带宽、周期等关键参数。

  • 模拟了包含目标(距离、速度、RCS)和噪声等因素的雷达回波信号,为后续DSP处理提供了数据基础。

  • 详细阐述了FFT在FMCW雷达距离和多普勒估计中的作用,通过两级FFT构建了距离多普勒地图。

  • 介绍了距离多普勒地图的构建过程和解读方法,展示了其在目标可视化和参数估计中的重要性。

  • 深入探讨了CFAR算法的基本原理、常见类型和实现过程,强调了其在自适应目标检测中的意义。

  • 通过可视化研究,展示了不同CFAR算法在检测性能上的差异,并分析了参数设置对检测结果的影响。

本文的贡献在于:

  • 提供了一个基于DSP的模拟雷达目标检测的完整流程。

  • 详细阐述了FMCW雷达信号处理的关键步骤,包括FFT和CFAR。

  • 强调了RD地图和CFAR可视化在理解雷达信号处理和检测性能评估中的重要性。

未来研究展望:

尽管本文对基于DSP的模拟雷达目标检测进行了初步研究,但仍有许多方面值得深入探索:

  • 更复杂的背景环境模拟:

     模拟更真实的杂波环境,例如地面杂波、海面杂波、天气杂波等,以及更复杂的干扰源,例如欺骗式干扰。

  • 多目标跟踪:

     在目标检测的基础上,研究如何实现多目标跟踪算法,例如卡尔曼滤波、粒子滤波等。

  • 低信噪比下的目标检测:

     研究在低信噪比条件下,如何利用更高级的信号处理技术(例如稀疏表示、深度学习)来提高目标检测性能。

  • 参数优化:

     进一步研究如何根据不同的场景和性能要求,优化CFAR算法的参数设置,或者开发自适应参数调整的CFAR算法。

  • 实际数据验证:

     将模拟研究的成果应用于实际雷达数据的处理和分析,验证算法的有效性。

  • 硬件平台实现:

     研究如何在嵌入式DSP平台或FPGA上实现本文所述的雷达信号处理算法,以满足实时处理的要求。

  • 多输入多输出(MIMO)雷达:

     将研究扩展到MIMO雷达系统,探讨如何利用阵列信号处理技术进一步提高目标检测和参数估计性能。

⛳️ 运行结果

🔗 参考文献

[1] 朱皓.FMCW雷达近程目标检测方法研究[D].桂林电子科技大学,2023.

[2] 孔毅.多目标毫米波雷达的桥梁结构健康监测研究[D].中国矿业大学,2022.

[3] 刘泽龙,雷鹏正,刘文彦,等.基于LFMCW雷达测距的改进频域CFAR算法[J].太赫兹科学与电子信息学报, 2012, 10(6):707-712.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值