✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
心电图(ECG)信号是临床上重要的生理信号之一,它反映了心脏电活动的规律性。然而,原始采集的心电图信号往往包含各种噪声和伪差,例如基线漂移、工频干扰、肌电干扰等。这些噪声会严重影响信号的质量和后续的分析,例如心率变异性分析、 QRS 波群检测、ST 段偏移分析等。因此,对心电图信号进行预处理是至关重要的步骤。本文旨在深入探讨心电图信号预处理中的几个关键环节:去趋势化基线漂移、分析信号功率谱、设计并应用低通 IIR 滤波器平滑信号,以及研究并补偿滤波器引入的延迟。
一、 心电图信号的基线漂移及其去趋势化
心电图信号的基线漂移是一种常见的低频噪声,表现为整个信号波形在纵轴上缓慢或快速地上下移动。其产生原因多种多样,包括患者呼吸、身体运动、电极与皮肤接触不良、设备自身漂移等。基线漂移的存在会使得对 P 波、QRS 波群和 T 波的幅度测量以及 ST 段的偏移分析变得困难和不准确。因此,去除基线漂移是心电图信号预处理的首要任务之一。
去除基线漂移的方法主要可以分为两类:时域方法和频域方法。时域方法主要包括多项式拟合、移动平均法和中值滤波法。多项式拟合是将基线漂移建模为一个低阶多项式,并通过最小二乘法拟合信号中的非QRS波段或整个信号,然后从原始信号中减去拟合的多项式。这种方法在基线漂移变化缓慢时效果较好,但对于快速变化的基线漂移或包含尖锐伪差的信号则效果不佳。移动平均法和中值滤波法则通过在滑动窗口内计算信号的平均值或中值来估计基线,并将其从原始信号中减去。中值滤波对尖峰噪声具有较好的鲁棒性,但可能对QRS波群的形态造成一定影响。
频域方法则基于基线漂移的低频特性。将心电图信号进行傅里叶变换,并在频域中对低频分量进行衰减或去除,然后再进行逆傅里叶变换得到去趋势化的信号。常用的频域方法包括高通滤波器。通过设计一个截止频率较低的高通滤波器,可以将低频的基线漂移分量滤除。然而,需要注意的是,过于陡峭的高通滤波器可能会对心电图信号的低频成分,例如 T 波和 P 波,造成一定程度的失真。
在实际应用中,选择何种去趋势化方法取决于基线漂移的特点和信号的质量。对于变化缓慢的基线漂移,多项式拟合或移动平均法可能足够。对于包含运动伪差引起的快速基线漂移,基于小波变换的多尺度分解方法也是一种有效的选择,它可以在不同尺度上分离基线漂移和心电图信号。
二、 心电图信号的功率谱分析
对心电图信号进行功率谱分析可以揭示信号在不同频率上的能量分布,从而帮助我们理解信号的构成及其受到的噪声影响。功率谱密度 (PSD) 通常采用 Welch 方法估计,它将信号分段、加窗并计算每个段的傅里叶变换,然后对所有段的功率谱进行平均。
心电图信号的功率谱通常呈现出以下特点:在较低频率(< 0.5 Hz)存在显著的基线漂移能量;在 0.5 Hz 到 40 Hz 之间是心电信号的主要能量分布区域,其中 QRS 波群的能量集中在 5 Hz 到 25 Hz 之间,T 波和 P 波的能量则分布在更低的频率;在 50 Hz 或 60 Hz 处可能存在明显的工频干扰峰;在更高频率(> 50 Hz)可能存在肌电干扰。
通过分析心电图信号的功率谱,我们可以直观地看到基线漂移的频率范围、工频干扰的存在与否以及主要心电成分的频率范围。这些信息对于设计后续的滤波器至关重要。例如,如果我们发现功率谱在 50 Hz 处存在尖锐的峰值,则需要设计一个陷波滤波器来去除工频干扰。如果基线漂移在 0.5 Hz 以下能量很高,则高通滤波器的截止频率可以设定在该频率附近。
功率谱分析不仅有助于理解信号的噪声成分,还可以用于评估滤波器的效果。通过比较滤波前后信号的功率谱,我们可以看到特定频率范围的能量是否得到了有效衰减,从而判断滤波器是否达到了预期的效果。
三、 低通 IIR 滤波器设计与平滑信号
心电图信号中除了基线漂移和工频干扰外,还常常包含高频噪声,如肌电干扰、电极接触噪声等。这些高频噪声会使得心电图波形变得毛躁不平,影响对波形特征的准确识别。低通滤波器是去除高频噪声、平滑信号的常用工具。数字滤波器可以分为有限脉冲响应 (FIR) 滤波器和无限脉冲响应 (IIR) 滤波器。相较于 FIR 滤波器,IIR 滤波器在相同的滤波性能下通常具有更低的阶数,因此计算量更小,实现更高效。然而,IIR 滤波器的一个重要缺点是它们通常会引入非线性相位延迟,这对于需要保留波形相对位置的分析(如 QRS 波群检测和心率变异性分析)而言是一个需要解决的问题。
常用的 IIR 滤波器类型包括 Butterworth、Chebyshev 和 Elliptic 滤波器。Butterworth 滤波器在通带和阻带都具有平坦的频率响应,但阻带衰减相对缓慢。Chebyshev 滤波器在通带或阻带(或两者)具有波纹,但阻带衰减 steeper。Elliptic 滤波器在通带和阻带都具有波纹,但在给定的阶数下具有最陡峭的过渡带。选择何种类型的滤波器取决于所需的滤波性能和对波纹的容忍度。
对于心电图信号的平滑处理,通常需要设计一个低通滤波器来衰减高于心电信号主要频率范围的高频噪声。滤波器的截止频率选择取决于具体的应用和信号的特性。例如,如果主要关注 QRS 波群,可以将截止频率设定在 40-50 Hz 左右,以去除肌电干扰等高频噪声。如果还需要分析 T 波,可能需要选择稍低的截止频率,但要权衡噪声去除效果和对信号的失真。
IIR 滤波器的设计通常基于模拟滤波器的原型,然后通过双线性变换等方法将其离散化。设计过程包括确定滤波器的阶数、截止频率和滤波器类型。这些参数的选择需要权衡滤波效果、滤波器复杂度以及引入的延迟。
对心电图信号应用低通 IIR 滤波器后,高频噪声得到有效衰减,信号变得更加平滑,波形特征更加清晰。这有助于后续的特征提取和分析。
四、 滤波器引起的延迟及其补偿研究
IIR 滤波器的一个固有特性是会引入相位延迟,不同频率分量通过滤波器的时间不同,导致输出信号相对于输入信号在时间轴上发生偏移和波形畸变(非线性相位延迟)。这种延迟对于需要精确定位信号特征的分析是不可接受的。例如,在计算心率变异性时,需要精确测量相邻 QRS 波峰之间的时间间隔,滤波器的延迟会影响测量结果。
为了解决 IIR 滤波器引入的延迟问题,可以采用多种补偿方法。一种常用的方法是双向滤波(Zero-phase filtering)。双向滤波通过两次应用滤波器来实现零相位延迟。首先,将信号正向通过滤波器;然后,将正向滤波器的输出信号反转,再次通过相同的滤波器;最后,将第二次滤波器的输出信号再次反转。由于第二次滤波器的延迟与第一次滤波器的延迟方向相反,两次滤波的延迟相互抵消,从而实现零相位延迟。双向滤波的代价是计算量增加了一倍,且可能在信号的起始和结束部分引入边界效应,需要进行适当的处理(如填充零或复制边缘数据)。
另一种补偿方法是估计并移除延迟。如果滤波器的群延迟(群延迟是相位延迟对频率的导数,反映了不同频率分量通过滤波器的时间)已知或可以估计,则可以通过将输出信号在时间轴上向前移动相应的延迟量来补偿。然而,IIR 滤波器的群延迟通常是频率的函数(即存在非线性相位),简单地整体移动并不能完全消除波形畸变。
对于更复杂的应用,可以考虑设计线性相位 IIR 滤波器。然而,线性相位 IIR 滤波器的设计比标准 IIR 滤波器复杂得多,且通常需要更高的阶数来实现相同的滤波性能。
在实际应用中,双向滤波是补偿 IIR 滤波器延迟最常用的方法,因为它能够完全消除相位延迟,从而保持信号的波形形态。虽然引入了边界效应和计算量增加,但在许多心电图分析应用中,保留精确的波形相对位置更为重要。
结论
对心电图信号进行有效的预处理是获得可靠分析结果的基础。本文深入探讨了心电图信号预处理中的几个关键环节:去趋势化基线漂移、分析信号功率谱、设计并应用低通 IIR 滤波器平滑信号,以及研究并补偿滤波器引入的延迟。
去趋势化通过去除低频的基线漂移,为后续分析奠定基础。功率谱分析揭示了信号的频率成分和噪声分布,为滤波器设计提供了重要依据。低通 IIR 滤波器能够有效去除高频噪声,平滑信号,但其引入的延迟必须得到有效补偿。双向滤波作为一种常用的补偿方法,能够实现零相位延迟,是保留心电信号波形形态的重要手段。
未来的研究可以在更先进的去趋势化方法(如基于独立成分分析或小波变换的方法)、更优化的 IIR 滤波器设计以及更精确的延迟估计和补偿技术方面展开。此外,结合机器学习等技术,开发自适应的滤波和去噪算法,以应对不同个体、不同噪声环境下心电图信号的复杂性,是心电信号处理领域的重要发展方向。通过不断深入研究和实践,我们能够更有效地提高心电图信号的质量,从而为临床诊断和治疗提供更准确、可靠的信息。
⛳️ 运行结果
🔗 参考文献
[1] 陈志敏.高效调制的多载波传输研究[D].东南大学,2015.DOI:CNKI:CDMD:1.1016.755742.
[2] 苏迪.用于窄带天线高频带利用率通信方法研究[D].西安电子科技大学,2015.DOI:10.7666/d.D01066218.
[3] 陈后金.数字信号处理(第2版)(BZ)[M].高等教育出版社,2008.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇