BER 与 NSR 32PSK 和 32QAM 调制器比较附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数字通信系统中,调制技术扮演着至关重要的角色,它决定了信息如何在有限的带宽和噪声环境下高效、可靠地传输。在众多调制方案中,32PSK(32相相移键控)和32QAM(32阶正交幅度调制)作为高阶调制技术,因其较高的频谱效率而在需要大容量数据传输的应用中得到广泛应用。然而,理解和评估它们的性能特性,特别是误码率(BER)与噪声信号比(NSR)之间的关系,对于选择合适的调制方案至关重要。本文旨在深入探讨在不同NSR条件下,32PSK和32Q2AM调制器的误码率性能,并进行详细比较分析。

理论基础:BER、NSR 与调制技术

在深入比较之前,首先需要阐明几个关键概念:

  • 误码率 (BER, Bit Error Rate):

     BER 是指在数据传输过程中,接收到的错误比特数与发送的总比特数之比。它直接反映了通信系统的可靠性,BER越低,系统的可靠性越高。

  • 噪声信号比 (NSR, Noise-to-Signal Ratio):

     NSR 是指接收到的噪声功率与有用信号功率之比。NSR越高,噪声对信号的干扰越严重,从而导致误码率升高。在实际应用中,我们更常使用信噪比(SNR, Signal-to-Noise Ratio),SNR是信号功率与噪声功率之比,即SNR = 1/NSR。NSR的倒数即为SNR。

  • 调制技术:

     调制是将数字信息转化为适合在传输介质上传输的模拟信号的过程。不同的调制技术利用信号的不同特性(如幅度、相位或频率)来编码信息,这直接影响了其抗噪声性能和频谱效率。

对于32PSK和32QAM,它们都是高阶调制技术,意味着每个调制符号可以携带更多的比特信息。具体而言,32代表每个符号可以表示2的5次方(32)种状态,因此每个符号携带5个比特信息。

  • 32PSK:

     32PSK利用信号的相位来编码信息。信号的幅度保持不变,不同的信息由不同的相位角来表示。在星座图上,32PSK的符号点均匀地分布在一个圆周上。

  • 32QAM:

     32QAM则同时利用信号的幅度和相位来编码信息。星座图上的符号点分布在一个二维平面上,具有不同的幅度和相位。

BER 性能与 NSR 的关系

在理想的AWGN(加性高斯白噪声)信道下,理论上可以推导出不同调制方案的BER与SNR(或NSR)之间的关系。通常,随着SNR的增加(NSR的降低),通信系统的BER会呈指数级下降。然而,不同的调制方案对噪声的敏感程度不同,其BER曲线随NSR的变化规律也存在显著差异。

32PSK 和 32QAM 的 BER 特性比较

在相同的NSR条件下,32QAM通常比32PSK具有更优越的BER性能,尤其是在高NSR(低SNR)条件下。这主要是由于以下几个原因:

  1. 符号间距: 在相同的平均信号功率下,32QAM的星座点在二维平面上分布,相比于32PSK在圆周上的分布,32QAM的符号点之间的最小欧氏距离通常更大。更大的符号间距意味着在受到相同功率的噪声干扰时,符号被误判为其他符号的概率较低,从而降低了误码率。

  2. 判决区域: 在接收端进行解调时,接收机需要根据接收到的信号向量所在的区域来判决发送的是哪个符号。对于32QAM,其星座点的二维分布使得判决区域更加“紧凑”,在噪声存在时,接收信号落在正确判决区域的概率相对较高。而对于32PSK,尽管其星座点在圆周上,但由于相位是周期性的,边界附近的符号容易受到噪声影响而误判。

  3. 幅度与相位抗噪性: 32PSK只利用相位来编码信息,因此对相位噪声非常敏感。而32QAM同时利用幅度和相位,对相位噪声的敏感度相对较低。在高NSR条件下,噪声对信号幅度和相位的影响都较大,但QAM对幅度变化的容忍度在一定程度上弥补了相位变化的敏感性,使得其整体抗噪性能更强。

NSR 对 BER 性能的影响

随着NSR的增加(SNR的降低),32PSK和32QAM的BER都会显著增加。然而,这种增加的速率和程度对于两者来说是不同的:

  • 高NSR(低SNR)区域: 在这个区域,噪声功率相对较高,信号容易受到严重干扰。此时,32QAM的 BER 性能优势尤为明显。由于其更大的符号间距和更好的二维判决区域,32QAM能够更有效地抵御噪声,保持相对较低的误码率。而32PSK由于其对相位噪声的敏感性以及相对较小的符号间距,其BER会迅速恶化。

  • 低NSR(高SNR)区域: 在这个区域,噪声功率相对较低,信号干扰较小。此时,32PSK和32QAM的BER都会非常低,甚至接近于零。虽然32QAM可能仍然保持微弱的优势,但两者之间的性能差距会显著缩小。

  • 过渡区域: 在高NSR和低NSR之间的过渡区域,32QAM的BER曲线通常会比32PSK下降得更陡峭,这意味着在达到相同的BER水平时,32QAM所需的SNR更低(即可以容忍更高的NSR)。

实际应用中的考量

尽管在理想的AWGN信道下,32QAM在BER性能方面通常优于32PSK,但在实际应用中,还需要考虑其他因素:

  • 非线性失真:

     实际信道可能存在非线性失真,这会对信号的幅度和相位产生影响。由于32QAM同时利用幅度和相位,它对非线性失真可能比只利用相位的32PSK更敏感。

  • 功率放大器效率:

     高阶QAM调制(如32QAM)的信号包络具有较大的峰值平均功率比(PAPR),这要求功率放大器具有较高的线性度,否则容易产生非线性失真。而32PSK的信号包络恒定,对功率放大器的要求相对较低。

  • 实现复杂度:

     32QAM的解调过程通常比32PSK更复杂,需要进行幅度和相位的联合判决。

  • 频谱效率:

     在相同的调制阶数下,32PSK和32QAM的频谱效率理论上是相同的(每个符号携带5个比特)。然而,在实际系统中,由于需要考虑滤波器设计、脉冲整形等因素,两者在实际频谱利用效率上可能存在细微差异。

总结

综合来看,在理想的AWGN信道下,在相同的NSR条件下,32QAM调制器通常比32PSK调制器具有更低的误码率,尤其是在高NSR(低SNR)区域。这是由于32QAM的符号间距更大、二维判决区域更优以及对相位噪声相对较低的敏感性。然而,在实际应用中,需要权衡考虑非线性失真、功率放大器效率、实现复杂度等因素。在对误码率要求较高,且信道噪声是主要限制因素的应用中,32QAM通常是更优的选择。而在对功放效率、非线性失真敏感,或实现复杂度有严格要求的应用中,32PSK可能更具优势。

最终的选择取决于具体的通信系统需求、信道特性以及对性能指标的优先级。对32PSK和32QAM在不同NSR条件下的BER性能进行详细的理论分析和仿真评估,对于选择最适合特定应用的调制方案至关重要,以确保数据传输的可靠性和效率。

⛳️ 运行结果

🔗 参考文献

[1] 佚名.扎克伯格推新式头盔[J].科学24小时, 2017(12):1.

[2] 佚名.这题超纲了[J].东西南北, 2017, 000(011):P.6-6.

[3] 裴志军.Matlab在∑△调制器设计中的应用[J].天津职业技术师范大学学报, 2005(2):13-15.DOI:10.3969/j.issn.2095-0926.2005.02.004.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值