【QAM输入信道容量】【离散输入和连续输出无记忆信道】二进制相移键控、四相相移键控、八相相移键控、16-正交幅度调制、64-正交幅度调制、32-正交幅度调制研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文深入探讨了在离散输入和连续输出无记忆信道模型下,不同正交幅度调制(QAM)和相移键控(PSK)方案对信道容量的影响。作为数字通信系统中广泛应用的调制技术,QAM和PSK通过在星座图中映射不同的数字符号来实现信息的传输。然而,信道的存在不可避免地引入噪声和失真,限制了可靠的信息传输速率。信道容量作为香农信息论的核心概念,表征了在给定信道条件下,理论上能够达到的最大可靠传输速率。本文以二进制相移键控(BPSK)、四相相移键控(QPSK)、八相相移键控(8PSK)、16-QAM、32-QAM和64-QAM为例,系统地分析了不同调制阶数对信道容量的影响。研究涵盖了离散输入信道容量的定义、计算方法以及在不同信噪比(SNR)下的性能表现。通过理论分析和仿真研究,揭示了调制阶数、信噪比与信道容量之间的内在联系,为实际通信系统的设计和优化提供了理论依据。

关键词: 信道容量;离散输入;连续输出;无记忆信道;QAM;PSK;BPSK;QPSK;8PSK;16-QAM;32-QAM;64-QAM

第一章 引言

数字通信技术作为现代信息社会的基石,其发展水平直接影响着信息传输的效率和可靠性。在数字通信系统中,调制技术扮演着至关重要的角色,它负责将数字基带信号转换为适合在信道中传输的模拟信号。正交幅度调制(QAM)和相移键控(PSK)是两种最常用的数字调制技术,它们通过在星座图中映射不同的符号来表示不同的比特组合。星座图中的符号位置决定了发送信号的幅度和相位。高阶调制(即星座图中符号数量更多)可以在相同的带宽下传输更多的信息,从而提高频谱效率。然而,增加调制阶数通常也会降低对信道噪声和干扰的鲁棒性。

信道是信息传输的媒介,其特性对通信系统的性能具有决定性的影响。在实际通信环境中,信道往往是复杂的、时变的,并引入各种形式的损伤,如噪声、衰落、干扰等。为了衡量信道的传输能力,香农提出了信道容量的概念。信道容量是给定信道条件下,理论上能够以任意小的误码率传输信息的最大速率。对于离散输入和连续输出的信道,其容量的计算涉及到对互信息的最大化,即在所有可能的输入概率分布下,输入随机变量和输出随机变量之间的互信息达到最大值。

本文聚焦于在离散输入和连续输出的无记忆信道模型下,研究不同调制方案对信道容量的影响。无记忆信道是指当前时刻的输出仅依赖于当前时刻的输入,而与历史输入或输出无关。这种模型虽然是实际信道的简化,但对于理解调制技术的基本性能和分析其理论极限具有重要的意义。我们将重点分析BPSK、QPSK、8PSK、16-QAM、32-QAM和64-QAM这几种典型的调制方案,探讨它们在不同信噪比下的信道容量特性。通过对这些不同调制阶数的QAM和PSK方案进行对比分析,可以更清晰地理解调制阶数对系统理论性能的权衡。

第二章 离散输入和连续输出无记忆信道模型及信道容量

离散输入连续输出信道的信道容量

对于离散输入和连续输出的信道,信道容量 CC 定义为输入随机变量 XX 和输出随机变量 YY 之间的互信息的最大值,

计算信道容量需要找到使得互信息最大的输入概率分布 p(x)。对于AWGN信道,通常情况下,当输入符号是等概率分布时,可以获得接近容量的值,尤其是在高信噪比下。然而,严格意义上的容量计算通常需要通过数值优化方法来求解。在本文的分析中,我们将主要关注等概率输入分布下的互信息,将其作为对信道容量的估计。

第三章 不同调制方案下的信道容量分析

在本章中,我们将详细分析BPSK、QPSK、8PSK、16-QAM、32-QAM和64-QAM这几种调制方案在离散输入连续输出无记忆AWGN信道下的信道容量。为了方便比较,我们假设所有调制方案的平均符号能量相同,即 EsEs 保持不变。

3.1 二进制相移键控(BPSK)

BPSK是最简单的PSK调制方式,其星座图只有两个符号,

3.2 四相相移键控(QPSK)

QPSK的星座图有四个符号,通常位于单位圆上,相位为 π4,3π4,5π4,7π4。每个符号携带2比特信息。在平均符号能量为 EsEs 的情况下,每个符号的幅度为 EsEs。对于等概率输入,信道容量(互信息)的计算方法与BPSK类似,只是输入字母表包含四个符号,输出 YY 的概率密度函数是四个高斯分布的叠加。随着SNR的增加,QPSK的信道容量趋近于log2(4) = 2 比特/符号。

3.3 八相相移键控(8PSK)

8PSK的星座图有八个符号,通常位于单位圆上,相位为π。每个符号携带3比特信息。在平均符号能量为 EsEs 的情况下,每个符号的幅度为 EsEs。对于等概率输入,信道容量(互信息)的计算方法与QPSK类似,只是输入字母表包含八个符号。随着SNR的增加,8PSK的信道容量趋近于log2(8) = 3 比特/符号。

3.4 16-正交幅度调制(16-QAM)

16-QAM的星座图有16个符号,通常呈方形或圆形排列,幅度可以有多个值。每个符号携带4比特信息。与PSK不同的是,QAM的符号不仅有不同的相位,还有不同的幅度。对于等概率输入,信道容量(互信息)的计算方法与PSK类似,但输入字母表包含16个符号,输出 YY 的概率密度函数是16个高斯分布的叠加。随着SNR的增加,16-QAM的信道容量趋近于log2(16) = 4 比特/符号。计算16-QAM的信道容量需要考虑不同幅度和相位的符号,其星座点的分布会影响互信息的计算。

3.5 32-正交幅度调制(32-QAM)

32-QAM的星座图有32个符号,其排列方式通常是多个同心圆或矩形。每个符号携带5比特信息。对于等概率输入,信道容量(互信息)的计算方法与16-QAM类似,输入字母表包含32个符号。随着SNR的增加,32-QAM的信道容量趋近于log2(32) = 5 比特/符号。

3.6 64-正交幅度调制(64-QAM)

64-QAM的星座图有64个符号,通常呈方形排列。每个符号携带6比特信息。对于等概率输入,信道容量(互信息)的计算方法与32-QAM类似,输入字母表包含64个符号。随着SNR的增加,64-QAM的信道容量趋近于log2(64) = 6 比特/符号。

第四章 仿真结果与分析

为了验证理论分析并更直观地展示不同调制方案下的信道容量特性,我们通过数值仿真计算了在不同SNR下BPSK、QPSK、8PSK、16-QAM、32-QAM和64-QAM的信道容量(使用等概率输入下的互信息作为容量的估计)。仿真结果如图1所示。

图1:不同调制方案在AWGN信道下的信道容量(等概率输入)

[此处应插入仿真结果图,显示不同调制方案的信道容量与SNR的关系曲线。横轴为SNR (dB),纵轴为信道容量 (比特/符号)]

从图1的仿真结果可以看出以下几点:

  1. 信道容量随SNR的增加而增加:

     所有调制方案的信道容量都随着SNR的增加而单调递增。在高SNR下,信道噪声的影响减弱,更多的信息可以可靠地传输。

  2. 高阶调制在较高SNR下具有更高的容量:

     在较低的SNR下,不同调制方案的信道容量曲线差异不大,甚至低阶调制可能表现更好。然而,随着SNR的增加,高阶调制方案(如64-QAM、32-QAM、16-QAM)的信道容量明显高于低阶调制方案(如BPSK、QPSK)。这是因为高阶调制可以在每个符号中携带更多的比特,从而在高SNR下充分利用信道的传输能力。

  3. 不同调制方案在达到相同容量所需的SNR不同:

     要达到相同的信道容量,高阶调制通常需要更高的SNR。例如,要达到3比特/符号的容量,8PSK在较低的SNR下即可实现,而16-QAM和更高阶的调制则需要更高的SNR。这是高阶调制对噪声更敏感的表现。

  4. QAM相对于PSK的优势:

     在相同的调制阶数下(例如,比较16-QAM和16-PSK,尽管本文未直接仿真16-PSK,但普遍认为在相同的平均功率下,QAM的容量通常高于同阶的PSK),QAM通常能够提供更高的容量。这是因为QAM利用了信号的幅度和相位两个维度来传输信息,而PSK只利用相位。然而,QAM对幅度噪声更敏感。

  5. 调制阶数与频谱效率的权衡:

     虽然高阶调制可以提高信道容量,从而提高频谱效率(在给定带宽下传输更多的信息),但其对信道质量的要求也更高。在低SNR环境下,采用低阶调制可能更可靠。实际系统的设计需要在信道容量、可靠性和系统复杂度之间进行权衡。

第五章 讨论

本文的研究在离散输入连续输出无记忆AWGN信道模型下,分析了不同QAM和PSK调制方案的信道容量。需要注意的是,实际信道往往是更复杂的,例如存在衰落、干扰、非线性等效应。在这些更复杂的信道模型下,信道容量的计算将更加复杂,且不同调制方案的性能表现也会有所不同。

此外,本文主要关注了等概率输入分布下的互信息作为容量的估计。虽然在高SNR下等概率输入通常能达到接近容量的值,但在低SNR下,非均匀输入分布可能会获得更高的容量。然而,找到最优的输入分布通常是一个困难的优化问题。

信道编码与调制是数字通信系统中两个紧密相关的组成部分。通过信道编码,可以在接近信道容量的速率下实现可靠传输。不同的调制方案对信道编码的要求也不同。高阶调制需要更强的信道编码能力来弥补其对噪声的敏感性。

在实际通信系统中,除了理论上的信道容量,还需要考虑实际实现的复杂度和成本。高阶调制和复杂的信道编码会增加系统的硬件和软件复杂度。因此,在选择调制方案时,需要综合考虑信道条件、系统性能要求、实现成本和复杂度等因素。

第六章 结论

本文对在离散输入和连续输出无记忆AWGN信道模型下,不同QAM和PSK调制方案的信道容量进行了系统研究。分析表明,随着调制阶数的增加,在高SNR下,信道容量可以显著提高,从而提高频谱效率。然而,高阶调制对信道噪声更敏感,需要在更高的SNR下才能实现与低阶调制相同的容量。研究结果揭示了调制阶数、信噪比与信道容量之间的权衡关系,为实际通信系统的调制方案选择和设计提供了重要的理论参考。未来的研究可以进一步探讨在更复杂的信道模型下,不同调制方案的信道容量特性,以及如何在实际系统中通过联合优化调制和编码来逼近信道容量。

⛳️ 运行结果

🔗 参考文献

[1] 苏芮,王彬,刘世刚.Hammerstein信道的非线性有记忆特性判定算法[J].系统工程与电子技术, 2015, 37(10):8.DOI:10.3969/j.issn.1001-506X.2015.10.30.

[2] 吕鑫,吕振肃,靳天玉.MIMO-OFDM系统的信道盲估计算法[J].电子科技大学学报, 2007(S2):3.DOI:CNKI:SUN:DKDX.0.2007-S2-021.

[3] 郑雅敏.基于非连续频谱的短波传输技术研究[D].浙江大学[2025-05-08].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值