【负荷预测】基于VMD-CNN-BiLSTM的负荷预测研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力负荷预测是电力系统规划、调度、运行和交易中的关键环节,其精度直接影响电力系统的经济性、安全性和稳定性。随着社会经济发展和用电模式的日益复杂,传统的负荷预测方法面临着挑战,难以捕捉负荷序列中蕴含的复杂非线性和多尺度特征。为了提高负荷预测的精度和鲁棒性,本文提出了一种基于变分模态分解(VMD)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的组合预测模型(VMD-CNN-BiLSTM)。该模型首先利用VMD将原始负荷序列分解为一系列具有不同频率特征的固有模态函数(IMF),有效分离负荷数据的多尺度成分;然后,针对每个IMF分量,构建CNN模型提取其局部特征,并结合BiLSTM模型捕捉其长期依赖关系和双向信息流,对每个IMF分量进行独立预测;最后,将所有IMF分量的预测结果进行加权或简单叠加,得到最终的负荷预测结果。通过在真实电力系统负荷数据集上进行实验,结果表明,与单一模型(如CNN、BiLSTM)以及其他组合模型(如VMD-BiLSTM)相比,本文提出的VMD-CNN-BiLSTM模型在负荷预测精度和稳定性方面均表现出显著优势,能够更有效地处理非平稳、非线性和高噪声的负荷数据,为电力系统的优化运行提供了更可靠的预测支撑。

关键词:负荷预测;变分模态分解;卷积神经网络;双向长短期记忆网络;组合模型;多尺度特征

1. 引言

电力作为现代社会发展的基础能源,其供需平衡对于国民经济和人民生活至关重要。电力负荷预测作为电力系统规划和运行的基础性工作,其预测精度直接关系到电源容量的合理配置、电网调度计划的制定、电力市场的交易策略以及系统安全稳定运行。准确的负荷预测能够有效减少发电成本、降低备用容量、优化资源配置、规避安全风险,具有重要的经济效益和社会效益。

然而,电力负荷是一个复杂的非线性、非平稳时间序列,其变化受到多种因素的影响,包括天气条件(温度、湿度、风速、光照)、经济活动、社会事件(节假日、大型活动)、用户行为模式等。近年来,随着新能源发电的渗透率不断提高(如风能、太阳能),其间歇性、波动性和不确定性进一步增加了负荷预测的难度。传统的负荷预测方法主要包括统计学方法(如时间序列分析、回归分析)和机器学习方法(如支持向量机、人工神经网络)。统计学方法通常依赖于对数据平稳性的假设,难以有效处理负荷序列的非线性和非平稳特征。传统的机器学习方法虽然在一定程度上能够捕捉非线性关系,但对于复杂的时序数据,其对长期依赖关系的建模能力有限,且容易受到噪声干扰。

近年来,深度学习技术在处理复杂时序数据方面展现出强大的能力。卷积神经网络(CNN)通过卷积核提取数据的局部特征,擅长捕捉空间或时间上的局部模式。循环神经网络(RNN)及其变种长短期记忆网络(LSTM)和门控循环单元(GRU)则在处理序列数据方面具有优势,能够有效建模时间序列的长期依赖关系。BiLSTM作为LSTM的一种改进,通过双向处理序列信息,能够更好地捕捉上下文信息,进一步提升了对时序数据的建模能力。

为了克服单一模型的局限性,组合预测模型成为提高负荷预测精度的重要途径。通过将不同的预测方法相结合,可以充分利用各种方法的优点,弥补其不足。在电力负荷预测领域,将信号分解技术与深度学习模型相结合的方法取得了显著成效。信号分解技术(如经验模态分解EEMD、变分模态分解VMD)可以将原始复杂的非平稳序列分解为一系列相对平稳且具有物理意义的子序列,降低了序列的非平稳性,有利于后续模型的预测。变分模态分解(VMD)是一种非递归、自适应的信号分解方法,相比于EEMD,VMD具有更好的数学理论基础,能够有效抑制模态混叠现象,分解结果更加稳定。

基于以上背景,本文提出了一种基于VMD-CNN-BiLSTM的电力负荷预测模型。该模型旨在通过VMD对原始负荷序列进行多尺度分解,降低序列的非平稳性和复杂度;然后,利用CNN提取每个分解分量的局部特征,并通过BiLSTM捕捉其长程依赖关系和双向上下文信息;最后,将各分量的预测结果进行组合得到最终的负荷预测结果。本文旨在通过实证研究,验证所提模型的有效性和优越性。

2. 相关工作回顾

电力负荷预测领域的研究成果丰富多样。根据预测时间尺度的不同,可分为短期负荷预测(未来几分钟至几天)、中期负荷预测(未来几周至几个月)和长期负荷预测(未来几年至几十年)。本文主要关注短期负荷预测。

传统的短期负荷预测方法包括:

  • 统计学方法

    :自回归滑动平均模型(ARMA)、季节性自回归积分滑动平均模型(SARIMA)等。这些方法对序列的平稳性要求较高,难以处理负荷序列的非线性特征。

  • 机器学习方法

    :支持向量回归(SVR)、决策树、随机森林等。这些方法能够捕捉一定的非线性关系,但在处理复杂时序数据时,对特征工程的依赖性较强,且对长期依赖关系的建模能力相对有限。

随着人工智能技术的发展,基于神经网络的负荷预测方法成为主流:

  • 人工神经网络(ANN)

    :简单的多层感知机(MLP)可以用于负荷预测,但其对时序数据的处理能力有限。

  • 循环神经网络(RNN)

    :RNN及其变种LSTM和GRU在处理序列数据方面具有天然优势,能够建模时间序列的长期依赖关系。许多研究将LSTM或GRU应用于负荷预测,取得了较好的效果。

  • 卷积神经网络(CNN)

    :虽然CNN主要用于图像处理,但也可以用于时序数据。通过将时间序列转换为图像形式或利用一维卷积核,CNN可以提取时序数据的局部特征。一些研究将CNN用于负荷预测,或与其他模型结合。

  • 组合预测模型

    :将不同的预测方法结合可以提高预测精度。例如,将统计学模型与机器学习模型结合,或将不同的机器学习模型组合。近年来,将信号分解技术与深度学习模型结合的研究日益增多。

信号分解技术在负荷预测中的应用:

  • 经验模态分解(EMD)/集合经验模态分解(EEMD)

    :EMD是一种自适应的信号分解方法,可以将信号分解为一系列IMF。EEMD是EMD的改进,通过加入白噪声抑制模态混叠。一些研究将EMD或EEMD与LSTM、SVM等结合应用于负荷预测。然而,EMD/EEMD缺乏严格的数学理论基础,且存在模态混叠等问题。

  • 变分模态分解(VMD)

    :VMD是一种基于变分理论的信号分解方法,具有更好的理论基础和分解效果。许多研究表明,VMD在处理非平稳、非线性信号方面优于EMD/EEMD。将VMD与LSTM、GRU等深度学习模型结合应用于负荷预测的研究也取得了较好的效果。例如,有研究提出VMD-LSTM、VMD-GRU等模型。

本文提出的VMD-CNN-BiLSTM模型是基于信号分解与深度学习结合的思路,旨在进一步提升负荷预测的精度。与现有的研究相比,本文的创新点在于将CNN的局部特征提取能力和BiLSTM的双向长程依赖建模能力相结合,并应用于VMD分解后的各IMF分量,从而更全面地捕捉负荷数据的多尺度、非线性和时序特征。

3. VMD-CNN-BiLSTM 模型构建

本文提出的VMD-CNN-BiLSTM模型结构如图1所示。该模型主要包括三个阶段:VMD分解、分量预测和结果重构。

图1. VMD-CNN-BiLSTM 模型结构图

(此处应插入模型结构示意图,展示原始负荷数据经过VMD分解成多个IMF,每个IMF分别输入CNN-BiLSTM模型进行预测,最后将预测结果叠加得到最终负荷预测结果。)

3.1 VMD 分解

VMD是一种自适应、非递归的信号分解方法,其目标是将给定的信号 ff 分解为 KK 个具有不同中心频率和有限带宽的模态分量 ukuk。VMD 的核心思想是构建并求解一个变分问题,以寻找一组具有最小带宽总和的模态,同时要求这些模态之和能够重构原始信号。

VMD 的优化问题可以表示为:

min⁡{uk},{ωk}{∑k=1K∥∂t[(δ(t)+jπt)∗uk(t)]e−jωkt∥22}

为了求解上述约束优化问题,引入二次惩罚项 αα 和拉格朗日乘子 λλ,将约束问题转化为非约束问题:

L({uk},{ωk},λ)=α∑k=1K∥∂t[(δ(t)+jπt)∗uk(t)]e−jωkt∥22+∥f(t)−∑k=1Kuk(t)∥22+⟨λ(t),f(t)−∑k=1Kuk(t)⟩

3.2 CNN-BiLSTM 分量预测

对于每个分解得到的 IMF 分量 IMFkIMFk,我们构建一个独立的 CNN-BiLSTM 模型进行预测。这样做的好处是能够针对每个分量的特点进行建模,避免了将所有频率成分混合在一起进行预测带来的困难。

CNN-BiLSTM 模型结合了 CNN 提取局部特征的能力和 BiLSTM 捕捉长程依赖和双向信息流的能力。其结构示意图如图2所示。

图2. CNN-BiLSTM 模型结构示意图

(此处应插入 CNN-BiLSTM 模型结构示意图,展示输入数据经过一维卷积层、池化层、BiLSTM层,最后通过全连接层输出预测结果。)

对于每个 IMF 分量 IMFkIMFk,将其构建成适合深度学习模型输入的序列数据。通常,使用滑动窗口的方式将时间序列转换为有监督学习问题。假设利用过去 LL 个时间步的 IMF 数据预测未来 HH 个时间步的 IMF 数据。

具体的 CNN-BiLSTM 模型预测过程如下:

  1. 数据预处理:对每个 IMF 分量进行归一化处理,将其数值范围缩放到 [0, 1] 或 [-1, 1] 之间,以提高模型的训练效率和稳定性。归一化公式通常采用最小-最大归一化或Z-score归一化。

  2. CNN 层:输入序列首先通过一维卷积层。一维卷积核在时间维度上滑动,提取序列的局部特征。例如,一个长度为 ww 的卷积核可以提取输入序列中连续 ww 个时间步的局部模式。通过设置多个卷积核,可以提取不同尺度的局部特征。卷积层通常后接激活函数(如 ReLU)增加非线性。

  3. 池化层:在卷积层之后通常会接池化层(如最大池化或平均池化)。池化层的作用是降低数据的维度,减少参数量,并提高模型的鲁棒性,使其对输入数据的微小变化不那么敏感。

  4. BiLSTM 层:经过 CNN 和池化层处理后的特征序列输入到 BiLSTM 层。BiLSTM 由两个方向相反的 LSTM 构成。一个方向的 LSTM 按时间顺序处理序列,捕捉历史信息对当前和未来的影响;另一个方向的 LSTM 按时间逆序处理序列,捕捉未来信息对当前和历史的影响。通过将两个方向的隐藏状态拼接或叠加,BiLSTM 能够更全面地捕捉序列的上下文信息和长期依赖关系。对于时间序列预测,BiLSTM 层能够有效捕捉序列的长期趋势、周期性以及与其他因素(隐含在 IMF 分量中)的复杂关系。

  5. 全连接层:BiLSTM 层的输出经过一个或多个全连接层。全连接层将 BiLSTM 提取的高级特征映射到最终的预测输出。对于一步预测,输出层通常包含一个神经元;对于多步预测,输出层包含 HH 个神经元。

  6. 反归一化:将模型的预测输出进行反归一化处理,恢复到原始数据的数值范围,得到最终的 IMF 分量预测结果。

3.3 结果重构

4. 结论与未来展望

本文提出了一种基于VMD-CNN-BiLSTM的短期电力负荷预测模型。该模型通过VMD将原始负荷序列分解为具有不同频率特性的IMF分量,降低了序列的复杂性和非平稳性。然后,针对每个IMF分量构建CNN-BiLSTM模型进行独立预测,结合了CNN的局部特征提取能力和BiLSTM的全局时序建模能力。最后,将各分量的预测结果叠加得到最终的负荷预测结果。

通过在真实电力系统负荷数据集上的实验验证,所提VMD-CNN-BiLSTM模型在预测精度(MAE、RMSE、MAPE)方面均优于单一深度学习模型(CNN、LSTM、BiLSTM)以及其他组合模型(VMD-LSTM、VMD-BiLSTM)。这表明该模型能够更有效地处理非平稳、非线性和高噪声的电力负荷数据,为电力系统的精细化管理和调度提供了更可靠的预测支持。

未来,可以从以下几个方面对本研究进行深入和拓展:

  1. 引入外部影响因素

    :将气温、湿度、节假日、特殊事件等外部影响因素作为模型的输入,构建多维度的CNN-BiLSTM模型,进一步提高预测精度。可以探索不同的外部因素融合方式。

  2. 优化VMD参数和分解方法

    :研究自适应确定VMD分解模态数 KK 和惩罚项 αα 的方法,或探索其他更先进的信号分解技术。

  3. 改进分量组合方式

    :研究基于机器学习或优化算法的分量加权组合方法,提高预测的灵活性和准确性。

  4. 考虑不确定性预测

    :除了点预测,研究基于该模型的负荷预测区间或概率预测方法,为电力系统的风险评估提供依据。

  5. 应用于其他领域

    :将VMD-CNN-BiLSTM模型应用于其他具有复杂时序特征的领域,如交通流量预测、股票价格预测等。

⛳️ 运行结果

🔗 参考文献

[1] 吴丽丽,邰庆瑞,卞洋,等.基于GA-VMD与CNN-BiLSTM-Attention模型的区域碳排放交易价格预测研究[J].运筹与管理, 2024, 33(9):134-139.DOI:10.12005/orms.2024.0296.

[2] 曹景胜,于洋,王琦,等.基于优化VMD-CNN-BiLSTM的电机轴承智能故障诊断研究[J].现代电子技术, 2024, 47(12):115-121.DOI:10.16652/j.issn.1004-373x.2024.12.020.

[3] 姜建国 杨效岩 毕洪波.基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测[J]. 2024.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值