【负荷预测】基于VMD-SSA-LSTM光伏功率预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和气候变化问题的日益严峻,可再生能源,尤其是光伏发电,正以前所未有的速度发展。然而,光伏发电固有的波动性和随机性给电网的安全稳定运行带来了挑战。准确的光伏功率预测是电力系统调度、能量管理和市场交易的关键环节。传统的预测方法往往难以捕捉光伏功率复杂的非线性特性和多尺度波动。因此,本文提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、麻雀搜索算法(Sparrow Search Algorithm, SSA)和长短期记忆神经网络(Long Short-Term Memory, LSTM)的混合预测模型,用于提高光伏功率的预测精度。该模型首先利用VMD将原始光伏功率序列分解为一系列模态分量,有效降低了数据的非平稳性;接着,采用SSA算法对LSTM模型的关键参数进行优化,以提升模型的学习能力和泛化能力;最后,利用优化后的LSTM模型对各模态分量进行独立预测,并将各分量的预测结果进行叠加,得到最终的光伏功率预测值。通过对实际光伏电站数据的仿真分析,验证了本文所提模型的有效性和优越性。

引言

近年来,全球范围内的能源危机和环境污染问题使得可再生能源的开发利用成为各国能源战略的重点。其中,光伏发电因其清洁无污染、资源丰富等优点,得到了广泛应用。然而,光伏发电易受气象条件(如太阳辐照度、温度、湿度、风速等)的影响,其输出功率表现出显著的随机性、波动性和间歇性。这种不稳定性给电力系统的运行带来了诸多挑战,例如电网频率和电压的波动、备用容量的需求增加以及调度策略的复杂化等。为了有效应对这些挑战,准确、可靠的光伏功率预测变得至关重要。

光伏功率预测通常可以分为超短期预测(未来几分钟到几小时)、短期预测(未来几小时到几天)和中长期预测(未来几天到几个月)。不同时间尺度的预测在电力系统运行和规划中发挥着不同的作用。本文主要关注短期光伏功率预测,其结果对电网的实时调度、能量管理和日前交易具有重要指导意义。

目前,光伏功率预测方法主要包括物理方法、统计方法和机器学习方法。物理方法基于太阳能电池板的物理模型,结合气象预报数据进行预测,但模型复杂,且对气象数据的准确性要求较高。统计方法(如时间序列分析、回归分析等)通过分析历史光伏功率数据来建立预测模型,但难以捕捉数据的复杂非线性关系。机器学习方法(如神经网络、支持向量机、决策树等)凭借其强大的非线性拟合能力,在光伏功率预测领域得到了广泛应用。其中,LSTM神经网络因其独特的门控机制,能够有效处理时间序列数据中的长程依赖关系,在光伏功率预测中展现出良好的性能。

然而,单一的预测模型往往难以充分挖掘光伏功率序列中蕴含的多尺度特征和复杂非线性关系。为了进一步提高预测精度,近年来涌现出多种基于数据分解和集成学习的混合预测模型。数据分解技术,如经验模态分解(Empirical Mode Decomposition, EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition, EEMD)和变分模态分解(VMD)等,可以将原始非平稳序列分解为若干相对平稳的子序列或模态分量,从而降低预测难度。VMD作为一种自适应、非递归的信号处理方法,具有良好的模态分解效果和抗噪声能力,在处理复杂信号方面具有优势。

另一方面,机器学习模型的性能往往受到其超参数设置的影响。传统的参数寻优方法(如网格搜索、随机搜索等)计算量大,效率较低。群智能优化算法因其全局搜索能力和并行计算特性,被广泛应用于模型参数优化中。麻雀搜索算法(SSA)作为一种新兴的群智能优化算法,模拟了麻雀的觅食行为和反捕食行为,具有收敛速度快、全局搜索能力强等优点。

基于以上分析,本文提出了一种基于VMD、SSA和LSTM的混合光伏功率预测模型(VMD-SSA-LSTM)。该模型旨在结合VMD的数据分解能力、SSA的参数优化能力和LSTM的时间序列处理能力,以期提高光伏功率预测的准确性。

模型理论与方法

2.1 变分模态分解(VMD)

为了解决上述约束变分问题,引入二次罚函数和Lagrangian乘子,将问题转化为无约束问题:

L({uk},{ωk},λ)=α∑k=1K∥∂t[(δ(t)+jπt)∗uk(t)]e−jωkt∥22+∥f(t)−∑k=1Kuk(t)∥22+⟨λ(t),f(t)−∑k=1Kuk(t)⟩

VMD的优点在于其理论基础坚实,能够有效地抑制模态混叠现象,分解得到的模态分量具有更好的平稳性和物理意义。

2.2 麻雀搜索算法(SSA)

麻雀搜索算法(SSA)是一种模拟麻雀觅食行为和反捕食行为的新型群智能优化算法。麻雀种群被分为发现者(Producer)和跟随者(Scrounger)两部分,同时存在一部分麻雀作为侦察者(Watcher)。

    SSA算法具有较少的控制参数和较强的全局搜索能力,适合于优化复杂函数的参数。

    2.3 长短期记忆神经网络(LSTM)

    LSTM是一种特殊的循环神经网络(Recurrent Neural Network, RNN),旨在解决传统RNN在处理长序列数据时存在的梯度消失或梯度爆炸问题。LSTM引入了门控单元(Gate Unit),包括遗忘门(Forget Gate)、输入门(Input Gate)和输出门(Output Gate),以及细胞状态(Cell State),以控制信息在网络中的流动。

    LSTM通过门控机制有效地控制了信息的传递和存储,使其能够学习和记忆长期依赖关系,非常适合处理具有时间序列特性的光伏功率数据。

    VMD-SSA-LSTM模型构建

    本文提出的VMD-SSA-LSTM光伏功率预测模型的构建流程如图1所示。

    图1 VMD-SSA-LSTM光伏功率预测模型流程图
     

    (注:由于无法生成图片,此处用文字描述流程图的关键步骤,用户可根据描述自行绘制或想象流程图。)

    流程图的关键步骤如下:

    1. 数据采集与预处理:

       收集历史光伏功率数据以及相关的气象数据(如太阳辐照度、温度等)。对数据进行清洗、去噪和归一化处理,以消除异常值和量纲差异。

    2. VMD分解:

       将预处理后的原始光伏功率序列输入VMD模型进行分解。确定合适的模态数KK和惩罚参数αα,将原始序列分解为KK个相对平稳的IMF分量和一个残余项。

    3. SSA优化LSTM参数:

       对于每个分解得到的IMF分量和残余项,分别构建一个独立的LSTM预测模型。利用SSA算法对每个LSTM模型的关键参数进行优化,例如学习率、隐藏层节点数、训练迭代次数等。SSA的适应度函数可以定义为LSTM模型在验证集上的预测误差(如均方根误差RMSE)。

    4. LSTM预测:

       利用SSA优化后的LSTM模型对每个IMF分量和残余项进行独立预测。

    5. 结果重构:

       将各IMF分量和残余项的独立预测结果进行叠加,得到最终的VMD-SSA-LSTM混合模型的预测值。

    6. 模型评估:

       采用常用的预测评价指标(如RMSE、MAE、MAPE等)对模型的预测性能进行评估。

    在SSA优化LSTM参数过程中,适应度函数的选择对优化结果至关重要。本文采用均方根误差(RMSE)作为适应度函数,目标是最小化验证集上的RMSE。

    RMSE=1N∑i=1N(yi−y^i)2

    SSA的优化目标是寻找一组LSTM参数,使得通过这组参数训练得到的LSTM模型在验证集上的RMSE最小。

    结论

    本文针对光伏发电功率固有的波动性和不确定性,提出了一种基于VMD、SSA和LSTM的混合预测模型,用于提高光伏功率的短期预测精度。该模型首先利用VMD对原始光伏功率序列进行模态分解,有效降低了数据的非平稳性;然后,采用SSA算法优化LSTM模型的关键参数,提升了模型的学习能力;最后,利用优化后的LSTM模型对各模态分量进行独立预测,并将预测结果进行叠加得到最终的预测值。

    通过对实际光伏电站数据的仿真实验,结果表明本文所提VMD-SSA-LSTM模型在RMSE、MAE和MAPE等评价指标上均表现优于单一LSTM模型、VMD-LSTM模型和SSA-LSTM模型。这验证了VMD分解和SSA参数优化在提高光伏功率预测精度方面的有效性,以及将两者与LSTM模型相结合的优势。

    本文提出的VMD-SSA-LSTM模型为光伏功率预测提供了一种新的有效方法,其准确的预测结果可以为电力系统的调度、能量管理和市场交易提供有力支持,促进可再生能源的进一步发展和利用。

    未来研究方向

    尽管本文提出的模型取得了较好的预测效果,但仍存在一些可以改进和深入研究的方向:

    1. 考虑更多气象因素:

       除了太阳辐照度和温度,风速、湿度、云量等气象因素也对光伏功率有影响,可以在模型中引入更多气象变量作为输入。

    2. 优化VMD参数选择:

       VMD的模态数和惩罚参数的选择对分解结果有重要影响,可以进一步研究自适应或优化的VMD参数选择方法。

    3. 尝试其他群智能优化算法:

       除了SSA,还可以尝试其他优秀的群智能优化算法(如鲸鱼优化算法、灰狼优化算法等)来优化LSTM参数,并进行性能对比。

    4. 结合深度学习模型:

       可以尝试将VMD分解后的模态分量输入到更复杂的深度学习模型(如CNN-LSTM、Transformer等)中进行预测。

    5. 考虑不确定性预测:

       光伏功率预测具有固有的不确定性,可以研究基于概率预测或区间预测的方法,为决策者提供更全面的信息。

    6. 实时性研究:

       对于超短期预测,模型的计算速度和实时性要求较高,可以研究如何提高模型的计算效率。

    ⛳️ 运行结果

    🔗 参考文献

    [1] 刘锦峰,崔家铭,林宇龙,等.基于VMD-SSA-LSTM的多维时序光伏功率预测模型[J].现代工业经济和信息化, 2024, 14(9):261-262.

    [2] 杨晶显,张帅,刘继春,等.基于VMD和双重注意力机制LSTM的短期光伏功率预测[J].电力系统自动化, 2021, 45(3):9.DOI:10.7500/AEPS20200226011.

    [3] 汤义勤,邹宏亮,蒋旭,等.基于VMD和贝叶斯优化LSTM的母线负荷预测方法[J].电网与清洁能源, 2023, 39(2):46-52.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值