基于蒙特卡诺的风、光模型出力附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和清洁能源技术的快速发展,风力发电和太阳能光伏发电在电力系统中的渗透率日益提高。然而,风能和太阳能固有的随机性和波动性给电力系统的规划、运行和安全带来了显著挑战。准确预测和建模风电、光伏的出力特性对于提高电力系统稳定性、优化资源配置至关重要。传统的确定性预测方法往往难以充分捕捉风、光出力的不确定性。为此,本文深入研究基于蒙特卡洛法的风电、光伏出力随机模型。蒙特卡洛法作为一种强大的数值模拟技术,能够通过大量随机抽样来逼近复杂问题的解,其在处理具有不确定性的随机过程方面展现出独特的优势。本文首先阐述了风电和光伏出力随机性的主要来源,包括气象条件的随机波动、设备性能的不确定性以及系统外部因素的影响。接着,详细介绍了基于蒙特卡洛法的风电、光伏出力建模流程,包括输入随机变量的确定与建模(如风速、光照强度)、随机变量之间的相关性处理以及利用出力曲线或经验模型进行出力计算。此外,本文探讨了基于蒙特卡洛法的出力建模在电力系统中的具体应用,例如在电力系统可靠性评估、风险分析、电力市场运行模拟以及电力系统规划等方面的作用。最后,对未来基于蒙特卡洛法的风电、光伏出力模型研究方向进行了展望,包括与其他预测方法的融合、考虑更高维度的不确定性以及提升计算效率等方面。本文的研究为理解和应对大规模可再生能源并网带来的不确定性提供了理论基础和方法支撑。

关键词: 蒙特卡洛法;风电出力;光伏出力;随机模型;不确定性;电力系统

1. 引言

能源是现代社会发展的基石,而化石燃料的过度消耗引发的环境污染和资源枯竭问题日益严峻。在此背景下,以风能和太阳能为代表的可再生能源在全球范围内得到了前所未有的发展。风力发电和太阳能光伏发电因其清洁、可再生的特性,已成为构建可持续能源体系的重要组成部分。然而,与传统的火力发电等可控电源不同,风电和光伏的出力受到自然环境条件的直接影响,表现出显著的随机性和波动性。风速的变化、光照强度的波动、云层覆盖以及气象条件的瞬息万变都会导致风电和光伏出力的非线性变化。这种不确定性对电力系统的运行和管理带来了诸多挑战,例如:

  • 电力系统平衡问题:

     风电和光伏出力的随机波动使得实时平衡电力系统的供需变得更加困难,可能导致频率和电压的不稳定。

  • 备用容量需求增加:

     为了应对风电和光伏出力的不确定性,电力系统需要配置更多的旋转备用和爬坡备用容量,增加了运行成本。

  • 输电网拥塞风险:

     大规模可再生能源的并网可能导致输电网的局部拥塞,影响电力传输效率和可靠性。

  • 电力市场价格波动:

     可再生能源出力的波动会影响电力市场的供需关系,导致电价的剧烈波动。

  • 系统规划复杂性:

     在进行电力系统长期规划时,准确评估风电和光伏未来的出力特性对于优化电源结构和输电网布局至关重要。

为了有效应对这些挑战,准确地建模和预测风电、光伏的出力特性是必不可少的。传统的确定性预测方法,如时间序列分析、回归分析等,在一定程度上能够捕捉风、光出力的平均趋势,但对于其固有的随机性和极端事件的预测能力有限。基于概率论的随机模型能够更好地描述风电和光伏出力的不确定性。在各种随机建模方法中,蒙特卡洛法以其简洁的原理和广泛的适用性,成为处理复杂随机问题的重要工具。

蒙特卡洛法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种通过大量随机抽样来估计概率分布、期望值或解决其他数值问题的计算方法。其核心思想是利用随机数来模拟问题中的随机过程,并通过对大量模拟结果的统计分析来获得问题的解。由于风电和光伏的出力受到多种随机因素的影响,且这些因素之间可能存在复杂的非线性关系,直接进行解析计算往往十分困难。而蒙特卡洛法能够通过模拟这些随机因素的联合分布,进而得到风电和光伏出力的概率分布,从而为电力系统的运行和规划提供更全面的信息。

本文旨在深入探讨基于蒙特卡洛法的风电、光伏出力随机模型。本文将首先分析风电和光伏出力随机性的主要来源,为后续建模奠定基础。接着,详细阐述基于蒙特卡洛法的建模流程,包括关键步骤和技术细节。随后,讨论该模型在电力系统中的具体应用场景。最后,对未来的研究方向进行展望。

2. 风电与光伏出力随机性来源分析

风电和光伏的出力是高度依赖于自然环境的随机变量。理解其随机性的来源是构建准确模型的前提。

2.1 风电出力随机性来源

风电场通过风力发电机将风能转换为电能。其出力主要取决于以下随机因素:

  • 风速的随机性:

     风速是影响风电出力最主要的因素。风速在时间和空间上都表现出显著的随机性。不仅瞬时风速在不断变化,而且一天、一个月、甚至一年的平均风速也具有明显的季节性和年际变化。风速的分布通常可以用Weibull分布或Rayleigh分布来描述。

  • 风向的随机性:

     风向的变化会影响风机叶片的迎风角度,进而影响风机的功率输出。风向的随机性通常用圆形分布(如Von Mises分布)来描述。

  • 大气湍流:

     大气湍流是风速和风向的随机脉动,会引起风机叶片承受载荷的快速变化,影响风机的稳定运行和出力。

  • 设备故障:

     风力发电机是由众多复杂部件组成的系统,设备的随机故障会影响风电场的整体出力。

  • 地形和尾流效应:

     地形对风速和风向有显著影响,山丘、建筑物等障碍物会改变风场特性。风机之间的尾流效应(下游风机受到上游风机产生的湍流和风速降低的影响)也会降低风电场的总出力。这些因素的随机性源于地形的复杂性和风机布局的不确定性。

  • 冰雪和沙尘等天气条件:

     冰雪覆盖会影响叶片的空气动力学性能,沙尘会磨损叶片,这些都会导致出力下降或设备停运。这些极端天气事件的发生具有随机性。

2.2 光伏出力随机性来源

光伏发电通过光伏电池将太阳辐射能转换为电能。其出力主要取决于以下随机因素:

  • 太阳辐照度的随机性:

     太阳辐照度是影响光伏出力最主要的因素。其随机性主要体现在以下几个方面:

    • 云层覆盖:

       云层是影响地面太阳辐照度最重要的随机因素。云层的类型、厚度、移动速度和范围都会对太阳辐照度产生显著影响,导致光伏出力快速波动。

    • 大气透明度:

       大气中的气溶胶、水汽等都会影响太阳辐射的衰减,其含量和分布也具有随机性。

    • 地理位置和季节:

       太阳高度角和方位角随地理位置和季节的变化而变化,导致可用太阳辐射的随机性。

  • 环境温度的随机性:

     光伏电池的转换效率受温度影响,温度升高会降低效率。环境温度的变化具有随机性。

  • 灰尘和污染物:

     光伏面板表面的灰尘、雪覆盖或鸟粪等会遮挡阳光,降低出力。这些因素的累积和清除具有随机性。

  • 设备性能衰减和故障:

     光伏组件和逆变器等设备会随时间发生性能衰减或随机故障,影响光伏电站的整体出力。

  • 遮挡:

     周围建筑物、树木或其他障碍物的阴影遮挡会影响部分光伏面板的出力。虽然物理障碍物相对固定,但其影响会随太阳位置的变化而变化,具有一定的随机性。

理解这些随机性来源及其相互关系,是选择合适的概率分布和建模方法的基础。基于蒙特卡洛法进行建模时,需要对这些关键的随机输入变量进行准确的概率建模。

3. 基于蒙特卡洛法的风电、光伏出力随机模型构建

基于蒙特卡洛法的风电、光伏出力建模通常包括以下主要步骤:

3.1 确定输入随机变量及其概率分布

这是蒙特卡洛模拟的关键第一步。需要识别对风电或光伏出力影响最大的随机因素,并选择合适的概率分布来描述它们。

  • 风电模型:
    • 风速:

       通常采用Weibull分布进行建模。Weibull分布由形状参数和尺度参数决定,可以通过历史风速数据进行参数估计(如最大似然估计法)。对于不同时间和地点的风速,其分布参数可能不同。

    • 风向:

       可以采用Von Mises分布或离散分布进行建模,取决于对风向随机性描述的精度要求。

    • 大气湍流:

       建模复杂,有时可以通过风速的波动特性间接考虑。

    • 设备故障:

       可以采用两态模型(正常/故障)或基于可靠性数据的模型来模拟设备故障,并将其纳入出力计算。

  • 光伏模型:
    • 太阳辐照度:

       这是一个比较复杂的随机变量。可以直接对历史辐照度数据进行统计分析,选择合适的分布类型(如Beta分布、经验分布等)。更精细的建模可以分别对直接辐射和散射辐射进行建模,因为它们受云层影响的方式不同。也可以利用马尔可夫链等方法来描述云层状态的随机变化,进而影响辐照度。

    • 环境温度:

       通常采用正态分布或经验分布进行建模。

    • 灰尘和遮挡:

       可以通过设定一个随机的遮挡系数或定期清洗/清除的随机事件来建模。

    • 设备故障:

       与风电类似,采用可靠性模型进行模拟。

在确定概率分布时,通常需要利用长期的历史气象数据和设备运行数据进行统计分析和参数估计。对于没有足够历史数据的情况,可能需要借鉴相似地点的数据或采用专家经验进行估计。

3.2 处理随机变量之间的相关性

风速、风向、辐照度、温度等随机变量之间往往存在一定的相关性。例如,大风天气通常伴随阴天,高辐照度通常伴随高温。忽略这些相关性可能导致模拟结果不准确。处理相关性的方法包括:

  • Copula函数:

     Copula函数可以将多个随机变量的边缘分布连接起来,形成它们的联合分布,从而灵活地描述它们之间的相关结构(线性或非线性)。

  • 相关矩阵:

     对于满足多维正态分布的随机变量,可以通过协方差矩阵或相关系数矩阵来描述它们之间的线性相关性。

  • 条件分布:

     可以利用条件概率分布来描述一个随机变量在另一个随机变量给定值下的分布,从而反映它们之间的依赖关系。

  • 基于物理过程的建模:

     通过更精细地模拟气象过程,可以自然地反映不同气象因素之间的相互作用。

在实际应用中,通常需要对历史数据进行相关性分析,选择合适的处理方法。

3.3 随机抽样

在确定了输入随机变量的概率分布和它们之间的相关性后,就可以进行随机抽样。蒙特卡洛法通过生成大量的随机样本来模拟可能的场景。常用的抽样方法包括:

  • 直接抽样:

     对于已知概率分布的随机变量,可以直接从其分布中生成随机数。

  • 逆变换法:

     如果能够获得累积分布函数的逆函数,可以通过均匀分布的随机数来生成目标分布的随机数。

  • 接受-拒绝抽样:

     当直接抽样困难时,可以利用一个易于抽样的建议分布来生成样本,并通过一个接受概率来决定是否接受该样本。

  • 重要性抽样:

     对于某些罕见事件的模拟,可以通过在一个“重要”的区域进行更多抽样来提高模拟效率。

  • 拉丁超立方抽样(LHS):

     LHS是一种分层抽样技术,可以保证样本点在输入变量的整个取值范围内均匀分布,从而在样本量相对较少的情况下获得更精确的估计。在进行多维随机抽样时,LHS通常比简单的随机抽样效率更高。

3.4 出力计算

对于每一个生成的随机样本(即一组风速、风向、辐照度、温度等随机变量的取值),需要根据风力发电机或光伏组件的出力特性曲线或数学模型来计算对应的风电或光伏出力。

  • 风电出力计算:

     风力发电机的出力通常由功率曲线描述,该曲线反映了风机在不同风速下的输出功率。同时,需要考虑切入风速、额定风速和切出风速的限制。在进行风电场整体出力计算时,还需要考虑风机之间的尾流效应和设备故障状态。

  • 光伏出力计算:

     光伏组件的出力由其特性曲线决定,该曲线反映了在不同辐照度和温度下的输出功率。考虑电池效率、最大功率点跟踪(MPPT)控制以及逆变器效率等因素。对于光伏电站整体出力,需要考虑组件的布局、遮挡以及逆变器的配置。

3.5 统计分析和结果输出

在进行了足够多的随机抽样和出力计算后,将获得大量的风电或光伏出力样本。通过对这些样本进行统计分析,可以得到出力变量的概率分布、期望值、方差、百分位数等统计特性。常用的统计分析方法包括:

  • 直方图:

     绘制出力样本的直方图,直观展示出力的概率分布形状。

  • 概率密度函数(PDF)估计:

     利用核密度估计等方法估计出力的概率密度函数。

  • 累积分布函数(CDF)估计:

     计算小于等于某个出力值的样本比例,得到出力的累积分布函数。CDF对于可靠性评估和风险分析非常有用。

  • 统计量计算:

     计算出力的均值、标准差、偏度、峰度等统计量。

  • 置信区间估计:

     利用统计学方法估计出力均值或其他统计量的置信区间。

通过以上步骤,基于蒙特卡洛法的模型能够输出风电、光伏出力的概率分布信息,而不是单一的确定性预测值。这为电力系统的运行和规划决策提供了更全面的不确定性信息。

4. 基于蒙特卡洛法的风电、光伏出力模型应用

基于蒙特卡洛法的风电、光伏出力随机模型在电力系统中有广泛的应用,主要体现在以下几个方面:

  • 电力系统可靠性评估:

     可靠性是电力系统运行的重要指标。风电和光伏的随机性会影响系统的供电可靠性。基于蒙特卡洛法模拟不同场景下的风电、光伏出力,结合其他电源和负荷的随机性,可以计算系统的预期能量未供应量(EENS)、频率和持续时间指标(SAIFI, SAIDI)等可靠性指标。

  • 风险分析:

     基于蒙特卡洛法可以对电力系统面临的风险进行量化分析,例如由于风电、光伏出力不足导致的电力短缺风险、备用容量不足风险以及输电网拥塞风险等。通过模拟不同概率下的出力情况,可以评估不同风险发生的概率和潜在损失。

  • 电力市场运行模拟:

     在电力市场中,风电和光伏的报价和调度受到其出力不确定性的影响。基于蒙特卡洛法模拟风电、光伏的未来出力,可以帮助市场参与者进行更合理的报价策略制定,并为市场出清过程提供随机性的输入。这对于电力市场的设计和运行效率至关重要。

  • 电力系统规划:

     在进行电力系统长期规划时,需要考虑未来电源结构和输电网的扩展。基于蒙特卡洛法模拟不同时间尺度下风电和光伏的出力特性,可以帮助优化电源容量配置、输电网路径选择以及储能系统的规模和位置,提高系统的经济性和可靠性。

  • 备用容量优化配置:

     电力系统需要配置一定量的备用容量来应对负荷波动和机组故障。随着风电和光伏渗透率的提高,其出力波动增加了对备用容量的需求。基于蒙特卡洛法模拟风电、光伏出力的不确定性,可以更精确地评估所需的备用容量规模,避免过度配置或配置不足。

  • 调度和控制策略优化:

     在电力系统实时调度中,需要根据对未来短时风电、光伏出力的预测来制定机组开停机计划和有功无功控制策略。虽然实时调度更多依赖于短期预测,但基于蒙特卡洛法的随机模型可以为短期预测提供概率分布信息,从而支持基于风险的调度决策。

通过提供出力的概率分布信息,基于蒙特卡洛法的模型能够帮助电力系统管理者和规划者做出更明智的决策,提高系统的运行效率、可靠性和经济性。

5. 挑战与未来展望

尽管基于蒙特卡洛法的风电、光伏出力模型具有显著优势,但在实际应用中仍然面临一些挑战:

  • 计算效率:

     为了获得足够精确的模拟结果,蒙特卡洛法通常需要大量的随机抽样,计算量较大,尤其是在模拟大型复杂电力系统时,可能需要较长的计算时间。

  • 输入变量的准确建模:

     准确获取和建模输入随机变量的概率分布及其相关性是模型精度的关键。然而,气象数据的获取、清理和分析需要投入大量精力,且未来的气象条件本身也具有不确定性。

  • 模型参数的估计:

     模型中的参数(如Weibull分布的参数、相关系数等)需要从历史数据中进行估计。数据质量、数据量以及估计方法的选择都会影响参数的准确性,进而影响模型的输出精度。

  • 模型复杂性与可解释性:

     构建包含多个随机变量和复杂关系的蒙特卡洛模型可能比较复杂,且其“黑箱”特性使得模型的内部工作原理和结果的可解释性不如一些解析模型。

  • 极端事件的模拟:

     对于一些低概率但影响巨大的极端气象事件(如台风、极端高温等),由于其发生频率较低,直接通过蒙特卡洛抽样可能难以获得足够的样本来准确估计其影响。

针对这些挑战,未来的研究可以从以下几个方面展开:

  • 与其他预测方法的融合:

     将基于蒙特卡洛法的随机模型与基于机器学习、深度学习等技术的短期预测方法相结合。机器学习方法可以提高短期预测的准确性,而蒙特卡洛法可以提供预测的不确定性信息,两者互补。

  • 提高计算效率:

     探索更高效的蒙特卡洛抽样方法,如准蒙特卡洛法、重要性抽样、并行计算等技术,以缩短模拟时间。利用 GPU 等硬件加速也可以提高计算效率。

  • 考虑更高维度的不确定性:

     除了气象条件和设备故障,还可以将负荷波动、电价波动、市场规则变化等更多维度的不确定性纳入到蒙特卡洛模型中,构建更全面的电力系统随机模型。

  • 数据驱动的建模:

     随着智能电网的发展,可以获得大量的传感器数据和运行数据。利用这些数据进行更精确的概率分布建模和相关性分析,减少对预设分布的依赖。

  • 模型验证和校准:

     建立完善的模型验证和校准机制,利用实际运行数据对模型的输出进行检验,并根据验证结果调整模型参数或结构,提高模型的预测精度。

  • 风险评估和优化:

     将蒙特卡洛模拟结果与风险评估框架相结合,为电力系统运行和规划提供基于风险的决策支持。例如,可以利用模拟结果进行鲁棒优化或风险规避优化。

  • 可解释性研究:

     虽然蒙特卡洛法本身是模拟方法,但可以结合敏感性分析等技术,研究哪些输入随机变量对出力波动的影响最大,从而提高模型的可解释性。

6. 结论

风电和光伏作为重要的可再生能源,其大规模并网对电力系统的运行和规划提出了新的挑战。准确建模和理解其出力随机性是应对这些挑战的关键。基于蒙特卡洛法作为一种强大的数值模拟技术,能够通过大量随机抽样来逼近风电、光伏出力的概率分布,为电力系统的可靠性评估、风险分析、市场运行和规划等提供全面的不确定性信息。本文详细阐述了基于蒙特卡洛法的风电、光伏出力模型构建流程,包括输入随机变量的确定与建模、相关性处理、随机抽样、出力计算以及统计分析等关键步骤。同时,讨论了该模型在电力系统中的广泛应用,并对未来研究方向进行了展望。

尽管面临计算效率和输入变量建模精度等挑战,但随着计算能力的提升、数据获取能力的增强以及建模技术的不断发展,基于蒙特卡洛法的风电、光伏出力随机模型将越来越成熟和高效。未来,与其他预测方法、优化技术和数据分析方法的融合,将进一步提升蒙特卡洛模型在应对大规模可再生能源并网带来的不确定性方面的应用价值。这将有助于构建更加灵活、可靠和经济的现代电力系统。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 熊文浩.船用焊接机器人机械臂的轨迹规划和路径避碰研究[D].武汉理工大学,2021.

[2] 于东.考虑风电不确定出力的电力系统优化调度模型研究[D].江苏大学,2016.DOI:10.7666/d.D01001583.

[3] 王振浩,康佳,裴哲义,等.基于多权重混合分布模型的光伏出力波动特性研究[J].太阳能学报, 2020, 41(6):10.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值