基于随机奇异值分解和软阈值的大数据集中健壮高效的谐波去噪附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

代科学技术和工程应用中,数据采集变得越来越便捷和海量。然而,在采集过程中,数据往往会受到各种噪声的干扰,其中一种常见的噪声类型是谐波噪声。谐波噪声通常是由周期性干扰源产生的,其频谱集中在离散频率点上,对后续的数据分析和处理造成严重影响。尤其是在大数据场景下,如何高效且鲁棒地去除谐波噪声,成为了一个亟待解决的问题。传统的降噪方法,如傅里叶滤波或小波变换,在处理复杂多变的大数据时,往往面临计算效率低、对噪声类型敏感或无法有效处理非平稳谐波等挑战。

近年来,基于矩阵低秩近似的降噪方法因其良好的理论基础和实际效果,受到了广泛关注。这类方法将带有噪声的数据视为一个低秩信号矩阵与一个噪声矩阵之和,通过求解一个优化问题来分离信号和噪声。奇异值分解(Singular Value Decomposition,SVD)是实现低秩近似的核心工具。然而,对于大规模数据集,直接进行完全SVD的计算复杂度极高,难以满足实时或近实时的处理需求。此外,实际中的数据往往并非严格低秩,而是近似低秩,且噪声并非严格满足独立同分布高斯白噪声假设,可能存在脉冲噪声或非高斯噪声,这使得传统的基于SVD的硬阈值或软阈值处理效果受到限制。

针对大数据集中谐波噪声的特点以及传统SVD方法的局限性,本文提出一种基于随机奇异值分解和软阈值的大数据集中健壮高效的谐波去噪方法。该方法通过采用随机SVD技术,大幅降低了计算复杂度,使其适用于大规模数据集的处理。同时,结合软阈值收缩操作,对奇异值进行非线性处理,能够更好地保留信号成分,抑制噪声。此外,本文还将探讨如何调整参数以增强算法的健壮性,使其对不同类型的谐波噪声以及一定程度的非高斯噪声具有更好的适应性。

二、 相关工作回顾

2.1 谐波噪声及其特点

谐波噪声是一种周期性噪声,其频谱由基频及其整数倍频率的离散谱线组成。常见的谐波噪声来源包括电力线干扰(50/60 Hz及其倍频)、开关电源、周期性机械振动等。谐波噪声的特点在于其频率是固定的,但在实际应用中,这些频率可能存在微小的波动,且其幅度可能随时间变化。有效的谐波去噪方法需要能够准确识别并去除这些离散谱线,同时避免损伤原始信号中的有用成分。

2.2 基于矩阵低秩近似的降噪方法

在现代科学技术和工程应用中,数据采集变得越来越便捷和海量。然而,在采集过程中,数据往往会受到各种噪声的干扰,其中一种常见的噪声类型是谐波噪声。谐波噪声通常是由周期性干扰源产生的,其频谱集中在离散频率点上,对后续的数据分析和处理造成严重影响。尤其是在大数据场景下,如何高效且鲁棒地去除谐波噪声,成为了一个亟待解决的问题。传统的降噪方法,如傅里叶滤波或小波变换,在处理复杂多变的大数据时,往往面临计算效率低、对噪声类型敏感或无法有效处理非平稳谐波等挑战。

近年来,基于矩阵低秩近似的降噪方法因其良好的理论基础和实际效果,受到了广泛关注。这类方法将带有噪声的数据视为一个低秩信号矩阵与一个噪声矩阵之和,通过求解一个优化问题来分离信号和噪声。奇异值分解(Singular Value Decomposition,SVD)是实现低秩近似的核心工具。然而,对于大规模数据集,直接进行完全SVD的计算复杂度极高,难以满足实时或近实时的处理需求。此外,实际中的数据往往并非严格低秩,而是近似低秩,且噪声并非严格满足独立同分布高斯白噪声假设,可能存在脉冲噪声或非高斯噪声,这使得传统的基于SVD的硬阈值或软阈值处理效果受到限制。

针对大数据集中谐波噪声的特点以及传统SVD方法的局限性,本文提出一种基于随机奇异值分解和软阈值的大数据集中健壮高效的谐波去噪方法。该方法通过采用随机SVD技术,大幅降低了计算复杂度,使其适用于大规模数据集的处理。同时,结合软阈值收缩操作,对奇异值进行非线性处理,能够更好地保留信号成分,抑制噪声。此外,本文还将探讨如何调整参数以增强算法的健壮性,使其对不同类型的谐波噪声以及一定程度的非高斯噪声具有更好的适应性。

二、 相关工作回顾

2.1 谐波噪声及其特点

谐波噪声是一种周期性噪声,其频谱由基频及其整数倍频率的离散谱线组成。常见的谐波噪声来源包括电力线干扰(50/60 Hz及其倍频)、开关电源、周期性机械振动等。谐波噪声的特点在于其频率是固定的,但在实际应用中,这些频率可能存在微小的波动,且其幅度可能随时间变化。有效的谐波去噪方法需要能够准确识别并去除这些离散谱线,同时避免损伤原始信号中的有用成分。

2.2 基于矩阵低秩近似的降噪方法

图片

2.3 随机奇异值分解(Randomized SVD)

图片

三、 基于随机奇异值分解和软阈值的谐波去噪方法

本文提出的基于随机奇异值分解和软阈值的谐波去噪方法,其核心思想是将带有谐波噪声的时间序列数据组织成一个 Hankel 矩阵,然后对该 Hankel 矩阵应用随机SVD和软阈值收缩操作,最后将去噪后的 Hankel 矩阵逆变换回时间序列。具体步骤如下:

3.1 构建 Hankel 矩阵

图片

3.2 随机奇异值分解

对构建的 Hankel 矩阵 HH进行随机奇异值分解。选择一种高效的随机SVD算法,例如基于随机投影的方法,计算HH的前kk个奇异值和对应的奇异向量:
H≈UkΣkVkT

图片

选择合适的 kk 是关键。对于谐波噪声,其在频谱上表现为离散谱线,这些谱线在 Hankel 矩阵的奇异值谱上通常对应于较大的奇异值。而随机噪声通常对应于较小的奇异值。因此,可以通过观察奇异值的分布,选择一个合适的截断秩 kk,将信号和部分噪声分离。常用的方法包括奇异值差异谱法、基于信息准则的方法等。

3.3 软阈值收缩

图片

3.4 重构去噪后的 Hankel 矩阵和时间序列

图片

四、 算法健壮性分析与提升

该方法对谐波噪声具有一定的健壮性,原因在于谐波噪声在 Hankel 矩阵中引入的结构相对规律,而随机噪声则相对分散。低秩近似和软阈值操作能够有效地将这些规律性结构与随机性噪声分离开来。然而,算法的健壮性还受到以下因素的影响:

4.1 随机SVD的精度:随机SVD是一种近似算法,其计算精度会影响最终的去噪效果。选择合适的随机投影维度或采样率,以及进行一定的功率迭代可以提高随机SVD的精度。

4.2 Hankel 矩阵窗口长度 LL:窗口长度的选择影响 Hankel 矩阵的结构以及奇异值的分布。合适的窗口长度能够更好地揭示信号的低秩结构,有利于区分信号和噪声。过小或过大的窗口长度都可能影响去噪效果。通常,窗口长度的选择需要根据信号的特点和噪声的频率成分来决定。对于周期性谐波噪声,可以考虑选择与谐波周期相关的窗口长度。

4.3 阈值参数 ττ:阈值参数的选择直接影响软阈值处理的效果。不合适的阈值可能导致信号过度平滑(阈值过大)或噪声去除不彻底(阈值过小)。如前所述,可以采用基于噪声水平估计、奇异值分布分析或交叉验证等方法来优化阈值参数。

4.4 非高斯噪声的影响:虽然该方法对一定程度的非高斯噪声具有鲁棒性,但对于强脉冲噪声等非高斯噪声,其效果可能受到影响。在存在强脉冲噪声的情况下,可以考虑先进行脉冲噪声去除预处理,再应用本文方法。

为了提升算法的健壮性,可以考虑以下改进:

  • 自适应阈值选择:

     根据 Hankel 矩阵奇异值的分布特点,设计自适应的阈值选择策略,例如采用基于统计模型的方法或机器学习方法来预测最优阈值。

  • 迭代软阈值算法:

     采用迭代的方式求解低秩近似问题,每次迭代更新奇异值和奇异向量,并进行软阈值处理,可以进一步提高去噪效果。

  • 与其他降噪方法的结合:

     将本文方法与其他针对特定类型噪声的降噪方法相结合,例如先进行谐波滤波去除主要谐波成分,再应用本文方法去除残余噪声。

五、 结论

本文提出了一种基于随机奇异值分解和软阈值的大数据集中健壮高效的谐波去噪方法。该方法利用 Hankel 矩阵的低秩结构,结合随机SVD技术的高效性以及软阈值收缩的非线性去噪能力,有效地分离信号和谐波噪声。与传统方法相比,本文方法在大数据场景下具有显著的计算优势,且对谐波噪声具有较好的鲁棒性。

未来的研究方向可以包括:

  • 更优的随机SVD算法选择:

     探索更适用于 Hankel 矩阵结构的随机SVD算法,进一步提高计算效率和精度。

  • 自适应 Hankel 矩阵窗口长度选择:

     开发能够自动选择最优窗口长度的算法,以适应不同信号特点和噪声环境。

  • 结合机器学习的阈值优化:

     利用机器学习方法从数据中学习最优的阈值参数,进一步提升去噪效果。

  • 拓展应用范围:

     将本文方法拓展应用于其他类型的周期性噪声或非周期性噪声的去除,例如脉冲噪声或高斯白噪声。

  • 并行计算与分布式实现:

     研究如何将本文方法进行并行计算或分布式实现,以更好地处理超大规模数据集。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报, 2004, 38(9):5.DOI:10.3321/j.issn:0253-987X.2004.09.006.

[2] 肖进胜,高威,彭红,等.基于局部自相似性和奇异值分解的超采样图像细节增强[J].计算机学报, 2016.

[3] 郝雪,李月,杨宝俊.基于奇异值分解和小波阈值方法的地震资料处理方法[J].吉林大学学报:地球科学版, 2006(S2):5.DOI:CNKI:SUN:CCDZ.0.2006-S2-013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值