✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着分布式电源(Distributed Generation, DG)、储能系统(Energy Storage System, ESS)和灵活负荷等多种资源在主动配电网(Active Distribution Network, ADN)中的广泛渗透,ADN 的运行模式日益复杂,其在故障恢复过程中的灵活性和潜力得到显著提升。传统的配电网故障恢复研究主要集中于通过网络重构来恢复部分或全部非故障区域负荷,但往往忽略了含 DG 和 ESS 的孤岛运行模式在提升供电可靠性方面的关键作用。本论文针对 ADN 故障后快速高效恢复供电的需求,提出并深入研究了一种集网络重构与孤岛划分于一体的统一模型。该模型旨在故障发生后,综合考虑DG和ESS的发电能力、储能状态、负荷特性、网络拓扑约束以及保护配合等因素,通过优化开关状态和孤岛边界,最大化恢复关键负荷供电,并兼顾非关键负荷的恢复。本文构建了一个包含多种运行模式、考虑多种约束条件的非线性混合整数规划模型,并进一步探索了将其转化为更易于求解形式的方法。通过算例分析,验证了所提统一模型的有效性和优越性,表明该模型能够在提高故障恢复率的同时,充分利用 ADN 中的各类分布式资源,为 ADN 的韧性提升提供理论支撑和实践指导。
关键词: 主动配电网;故障恢复;网络重构;孤岛划分;统一模型;分布式电源;储能系统;混合整数规划
1. 引言
随着能源结构的转型和电力系统智能化水平的提升,主动配电网作为连接电网主干和终端用户的关键环节,其结构和功能正发生深刻变化。大量分布式电源(DG)、储能系统(ESS)、电动汽车以及灵活负荷的接入,使得ADN具备了主动调控能力,但也增加了运行的复杂性和不确定性。作为电力系统韧性的重要体现,ADN在遭受自然灾害、设备故障或网络攻击等突发事件后,快速有效地恢复供电至关重要。
传统的配电网故障恢复策略主要依赖于网络重构,即通过改变断路器和隔离开关的状态,调整网络拓扑,将故障区域从系统中隔离,并将非故障区域的负荷转移到健康的馈线或变电站供电,以恢复尽可能多的非故障区域负荷。然而,这种传统的重构方法往往局限于辐射状运行模式,且未能充分利用ADN中DG和ESS的潜力。在故障发生后,DG和ESS具备为部分区域提供独立供电(即孤岛运行)的能力,这对于提高供电可靠性,尤其是对重要负荷的供电保障具有重要意义。
近年来,随着ADN技术的不断发展,关于含DG和ESS的配电网故障恢复研究开始将网络重构和孤岛运行结合起来。一些研究尝试将孤岛划分作为重构过程的附加选项,或者先进行重构再考虑孤岛划分。然而,多数研究未能将网络重构与孤岛划分有机地融合在一个统一的优化框架内,导致可能错过全局最优解,或者求解过程复杂且难以收敛。
因此,亟需构建一种统一的模型,能够在故障发生后,同时考虑并优化网络重构和孤岛划分策略,以实现最大化的负荷恢复。本论文在前人研究的基础上,针对主动配电网故障恢复的特点,提出并深入研究了一种更具通用性和有效性的【升级版本】统一模型。该模型旨在克服现有方法的不足,更全面地考虑ADN中的多种分布式资源和复杂约束,提高故障恢复的效率和可靠性。
2. 理论基础
本论文的研究基于主动配电网的运行特性、故障分析原理、网络重构技术以及孤岛运行理论。
2.1 主动配电网运行特性
主动配电网的显著特点在于其包含大量的分布式电源(DG)、储能系统(ESS)以及可控负荷。这些分布式资源使得ADN具备了以下特性:
- 双向潮流:
DG的出力和负荷的变化可能导致配电网中出现双向潮流,改变了传统辐射状配电网单向潮流的特性。
- 自愈能力:
DG和ESS的孤岛运行能力赋予了ADN在故障隔离后,对部分区域进行局部供电的能力,提升了系统的自愈能力。
- 灵活性和不确定性:
DG的间歇性和随机性(如光伏、风电),以及负荷的波动性增加了ADN运行的复杂性和不确定性。
2.2 配电网故障分析
配电网故障主要包括线路故障、设备故障等。故障发生后,故障区域需要被快速隔离,以防止故障扩大并保护非故障设备。故障隔离通常通过断路器的跳闸来实现。故障隔离后的非故障区域,部分可能处于停电状态,需要进行恢复。
2.3 网络重构原理
网络重构是通过改变配电网中联络开关和分段开关的状态,来调整网络拓扑的过程。在故障恢复中,网络重构的主要目标是将停电的非故障负荷转移到有电源的馈线或孤岛供电,同时满足电网运行的各种约束,如辐射状运行(在连接主网或孤岛电源的情况下)、节点电压、支路电流等。
2.4 孤岛运行理论
在配电网故障隔离后,部分区域可能与主电网断开连接。如果这些区域内存在足够容量的DG和ESS,则可以形成一个或多个孤岛,由岛内的DG和ESS为岛内负荷供电。孤岛运行需要满足以下条件:
- 电源-负荷平衡:
孤岛内的DG出力和ESS放电功率需要能够满足岛内负荷需求(考虑损耗)。
- 电压和频率稳定:
孤岛内的DG和ESS需要具备维持孤岛电压和频率稳定的能力。
- 保护配合:
孤岛内部的保护系统需要重新整定或适应孤岛运行模式。
3. 问题描述
主动配电网故障发生后,假设故障区域已被准确检测并隔离。剩余的非故障区域可能面临停电。故障恢复的目标是在满足一系列约束条件下,最大化恢复停电负荷。本论文研究的核心问题是如何构建一个统一的优化模型,能够同时决定最优的网络拓扑(通过开关状态调整实现)和最优的孤岛划分方案,从而在故障发生后的短时间内,尽可能地恢复负电荷供电。
具体来说,该问题需要考虑以下几个关键方面:
- 多种电源类型:
模型应考虑并网型DG、独立运行型DG以及储能系统的出力或放电能力。
- 多种负荷类型:
模型应区分关键负荷(如医院、消防站等)和非关键负荷,优先恢复关键负荷供电。
- 网络拓扑约束:
恢复后的电网应满足辐射状运行要求(在连接主网或孤岛电源时),保证系统的安全稳定运行。
- 潮流约束:
恢复后的网络潮流应满足支路容量限制。
- 电压约束:
恢复后的节点电压应在安全范围内。
- 电源容量约束:
DG和ESS的出力/放电功率应在其额定容量范围内。
- 储能状态约束:
储能系统的充放电状态应满足其当前荷电状态(State of Charge, SOC)的限制。
- 保护配合约束:
尽管在故障恢复阶段,详细的保护整定可能复杂,但模型应考虑孤岛形成后,内部线路的保护配合基本需求,避免因孤岛内部故障导致整个孤岛崩溃。
- 开关操作约束:
考虑故障恢复时开关的操作次数限制和操作时间。
将网络重构和孤岛划分视为两个独立的优化过程可能无法达到全局最优。例如,最优的重构方案可能无法形成有效的孤岛,而最优的孤岛划分方案可能需要牺牲部分通过重构可以恢复的负荷。因此,一个统一的模型是必要的。
4. 模型构建
本论文构建了一个统一的故障恢复模型,将网络重构和孤岛划分同时纳入优化决策过程。模型的决策变量包括网络中所有可操作开关的状态(开或合)、每个节点是否恢复供电、以及形成孤岛的边界和内部运行状态。
4.1 目标函数
故障恢复的核心目标是最大化恢复的负荷功率。可以根据负荷的重要性赋予不同的权重。
4.2 约束条件
模型需要满足一系列物理和运行约束:
4.2.1 网络拓扑约束
故障恢复后的网络应由与主网连接的部分和形成的孤岛组成。与主网连接的部分和孤岛内部应满足辐射状运行的要求。孤岛之间不能有物理连接。
4.2.2 潮流和电压约束
考虑到模型的复杂性,通常采用线性化或近似化的潮流模型,如直流潮流或考虑损耗的近似交流潮流。在本研究中,我们采用基于支路功率流的线性化模型:
4.2.3 电源和储能约束
4.2.4 负荷约束
4.2.5 开关状态约束
4.2.6 孤岛划分约束
孤岛的形成是网络重构的特殊情况。孤岛内部需要有足够的电源支撑,且与主网断开。
- 孤岛电源约束:
每个形成的孤岛必须包含至少一个DG或ESS作为主要电源。
- 孤岛边界约束:
孤岛边界由断开的开关确定。孤岛内部的节点通过闭合的开关相互连接。
- 孤岛内部潮流平衡:
孤岛内部的电源出力之和应等于岛内负荷之和加上孤岛内部损耗。
4.3 模型形式
综合上述目标函数和约束条件,构建的统一模型是一个混合整数非线性规划(MINLP)模型,其中开关状态变量和负荷恢复变量为整数变量,潮流、电压、电源出力等为连续变量。由于非线性约束(如潮流约束)和整数变量的存在,直接求解MINLP模型通常计算量较大,难以在短时间内获得最优解。
5. 求解方法
为了有效求解上述混合整数非线性规划模型,可以采用以下方法:
5.1 模型线性化
将非线性约束进行线性化处理。例如,可以将乘积项通过引入辅助变量和Muirhead不等式或Big-M方法转化为线性不等式。潮流约束可以采用直流潮流模型或基于支路功率流的线性化近似。虽然线性化会带来一定的精度损失,但可以显著降低求解复杂度。
5.2 转化为混合整数线性规划(MILP)
通过线性化,可以将原MINLP模型转化为混合整数线性规划(MILP)模型。MILP模型可以利用现有的成熟求解器(如CPLEX, Gurobi, MOSEK)进行求解。
5.3 启发式算法或智能优化算法
对于规模较大的配电网,即使线性化后的MILP模型也可能难以在规定时间内求解。此时可以考虑采用启发式算法或智能优化算法,如遗传算法、粒子群优化算法、模拟退火算法等。这些算法虽然无法保证找到全局最优解,但在实际应用中往往能够找到高质量的近似最优解。
5.4 分阶段求解或分解协调
可以将复杂的统一模型分解为子问题进行求解,然后通过协调机制迭代优化。例如,可以先进行网络重构(不考虑孤岛),再进行孤岛划分;或者将问题分解为多个可能的孤岛形成区域进行局部优化,再进行全局协调。
5.5 基于Benders分解算法
可以将MILP模型分解为主问题和子问题。主问题决定开关状态和孤岛划分,子问题进行潮流计算和约束校验。通过迭代求解主问题和子问题,并加入Benders割平面,逐步逼近最优解。
在本论文的【升级版本】研究中,我们着重探索了将非线性潮流约束通过分段线性化或利用更精确的线性化方法转化为MILP模型,并结合基于MILP的求解器进行求解。同时,对于大规模算例,我们也考虑了将问题分解为多个子区域进行并行或分布式求解的策略。
6. 算例分析
为了验证所提统一模型的有效性和优越性,我们构建了基于IEEE 33节点配电网的仿真算例,并进行了扩展,接入了不同容量的DG和ESS。设定了不同的故障场景,并与传统的单独进行网络重构或先重构后孤岛划分的方法进行对比。
6.1 算例设置
- 网络结构:
IEEE 33节点配电网,包含33个节点,32条支路,5个联络开关。
- 分布式资源:
在部分节点接入不同类型的DG(如光伏、小型水电)和ESS。设定其最大出力容量和运行特性。
- 负荷分布:
设定节点的负荷功率,并区分关键负荷和非关键负荷,赋予不同的权重。
- 故障场景:
模拟不同的线路故障,导致部分区域停电。
6.2 对比方案
- 方案一:
传统的网络重构方法,目标是最大化恢复负荷,不考虑孤岛运行。
- 方案二:
先进行网络重构,再根据重构后的网络尝试进行孤岛划分。
- 方案三:
本文提出的网络重构与孤岛划分统一模型。
6.3 仿真结果分析
对不同故障场景下各方案的恢复结果进行比较,包括:
- 负荷恢复率:
恢复的总负荷功率占总停电负荷的比例。
- 关键负荷恢复率:
恢复的关键负荷功率占总停电关键负荷的比例。
- 形成的孤岛数量和规模:
方案三能够形成的孤岛数量及其内部负荷规模。
- 开关操作次数:
各方案所需的开关操作次数。
- 计算时间:
各方案的求解时间。
通过仿真结果,可以清晰地展示方案三在负荷恢复率(尤其是关键负荷)、充分利用分布式资源以及提高供电可靠性方面的优势。同时,分析模型的计算效率,并讨论在大规模电网中的应用潜力。
6.4 结果讨论
进一步分析仿真结果背后的原因。例如,统一模型能够更好地协调孤岛内电源与岛外电源之间的关系,避免了分阶段求解可能导致的局部最优。同时,讨论模型的局限性,如对实时性要求较高的场景的适应性,以及更复杂的保护配合、通信约束等因素的考虑。
7. 结论与展望
7.1 结论
本文针对主动配电网故障恢复的需求,提出了一种集网络重构与孤岛划分于一体的统一优化模型。该模型将两种重要的故障恢复手段有机地融合在一个框架内,并全面考虑了分布式电源、储能系统、多种负荷类型以及各种网络运行约束。通过算例分析表明,与传统的故障恢复方法相比,所提统一模型能够显著提高负荷恢复率,尤其是关键负荷的恢复水平,并能够更有效地利用ADN中的分布式资源,提高系统的韧性和供电可靠性。将复杂模型转化为MILP形式并利用现有求解器进行求解,证明了模型的实用性和可操作性。
7.2 展望
未来的研究可以从以下几个方面进一步深入:
- 考虑不确定性:
引入DG出力和负荷的预测误差等不确定性因素,构建鲁棒优化或随机优化模型。
- 动态恢复过程:
将故障恢复建模为一个动态过程,考虑恢复过程中的时序约束和ESS的动态行为。
- 更精细的保护配合:
在模型中更详细地考虑孤岛形成后的保护整定和协调问题。
- 通信网络约束:
考虑实际通信网络的延时和可靠性对故障恢复决策的影响。
- 基于强化学习的求解方法:
探索利用强化学习等人工智能技术求解大规模故障恢复问题,提高决策的实时性。
- 分布式和协同控制:
研究分布式或协同控制策略,实现故障恢复决策的局部化和并行化。
⛳️ 运行结果
🔗 参考文献
[1] 汤一达,吴志,顾伟,等.主动配电网故障恢复的重构与孤岛划分统一模型[J].电网技术, 2020, 44(7):7.DOI:10.13335/j.1000-3673.pst.2019.1483.
[2] 朱俊澎.主动配电网重构与孤岛划分研究[D].东南大学,2018.
[3] 丁健,马春雷,陈宣林,等.计及"源-网-荷"影响的主动配电网可靠性评估[J].电网与清洁能源, 2020, 36(3):9.DOI:CNKI:SUN:SXFD.0.2020-03-004.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇