综合能源系统分析的统一能路理论(三):《稳态与动态潮流计算》附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的深刻变革和可持续发展理念的深入人心,以电、热、冷、气等多种能源载体耦合互补为特征的综合能源系统(Integrated Energy System, IES)正成为未来能源发展的重要方向。对IES进行准确、可靠的分析与建模,是实现其高效运行、优化控制和规划设计的基础。作为综合能源系统分析统一能路理论系列文章的第三篇,本文聚焦于IES中的潮流计算问题,深入探讨了基于统一能路理论的稳态与动态潮流计算方法。通过将不同能源网络的物理特性映射到统一的能路模型中,我们能够构建一个跨能量域的统一计算框架,有效解决传统分领域计算带来的协同难题,为IES的分析与优化提供了强大的工具。

关键词: 综合能源系统;统一能路理论;潮流计算;稳态分析;动态分析;能量耦合

引言

传统的能源系统分析往往局限于单一能源领域,例如电力系统、天然气系统或供热系统。然而,综合能源系统通过多种能源载体的深度融合,使得不同能源网络之间形成了复杂的耦合关系。这种耦合关系不仅提高了能源利用效率,也带来了新的分析挑战。如何在考虑能源转换与传递的物理约束以及系统运行经济性约束的前提下,准确计算综合能源系统中各种能源载体的流向、流量、压(温)度等状态量,即是综合能源系统潮流计算的核心问题。

传统的潮流计算方法,如电力系统的牛顿-拉夫逊法或天然气系统的节点压力法等,在处理单一能源网络时具有较高的效率和精度。但当应用于IES时,由于不同能源网络物理方程形式的差异以及复杂的能量耦合点(如热电联产机组、电转气设备、储能装置等)的存在,简单地将各子系统独立计算或进行简单的串联已无法准确反映系统的整体运行状态。这种分领域计算的方式不仅难以实现多能流的协同优化,还可能导致计算结果的偏差甚至不收敛。

为了克服上述挑战,综合能源系统分析的统一能路理论应运而生。该理论旨在构建一个统一的数学模型,将不同能源网络的物理定律和耦合关系抽象为能量流动的统一形式。通过将不同能源载体的物理量(如电压、电流、压力、温度等)统一映射到抽象的“能路”概念中,并建立统一的能量流动方程,可以实现跨能源域的统一建模与分析。本文将在此基础上,重点阐述如何利用统一能路理论进行IES的稳态与动态潮流计算。

1. 统一能路理论回顾与IES稳态潮流计算模型构建

统一能路理论的核心思想在于将不同能源网络的物理现象统一映射到能量流动的概念。在电力系统中,能量流动的驱动力是电压差,流动的量是电流;在天然气系统中,能量流动的驱动力是压力差,流动的量是天然气流量;在供热系统中,能量流动的驱动力是温差,流动的量是热功率或流量。统一能路理论通过定义统一的“能量势差”和“能量流”,将这些不同物理量统一化。

在稳态分析中,IES的潮流计算旨在求解系统在给定边界条件(如负荷、电源出力等)下的稳定运行状态。基于统一能路理论,可以将IES建模为一个由多个互连的“能路”组成的网络。每个能路代表一种特定的能量传输路径,其两端存在能量势差,并有相应的能量流通过。能量势差与能量流之间的关系由能路的物理特性决定,例如电力线路的阻抗、天然气管道的阻力等。

统一能路理论将不同能源网络的节点方程和支路方程统一为矩阵形式。节点方程描述了在每个节点处能量的守恒关系,即流入节点的能量流等于流出节点的能量流(考虑能量转换设备)。支路方程描述了能量势差与能量流在每条能路上的关系。通过将不同能源网络的节点和支路统一化表示,可以构建一个大型的非线性方程组来描述整个IES的稳态运行状态。

具体而言,稳态潮流计算模型的构建步骤如下:

  1. 系统拓扑建模:

     将IES中的所有节点(包括电力节点、天然气节点、供热节点、能源转换节点等)和支路(包括电力线路、天然气管道、供热管道等)统一抽象为能路网络中的节点和支路。

  2. 能源载体与物理量统一化:

     将不同能源载体的关键物理量(如电压、电流、压力、流量、温度、热功率等)映射到统一的“能量势差”和“能量流”概念。

  3. 能路参数模型建立:

     针对不同类型的能路(如电力线路、管道等),建立能量势差与能量流之间的数学模型,考虑其物理特性和损耗。

  4. 能量转换设备建模:

     对IES中的能源转换设备(如CHP、P2G、电锅炉等)进行统一建模,描述其输入与输出能量流之间的关系,并将其作为能路网络中的特殊节点或支路进行处理。这些设备的模型往往是功率耦合的,需要将其耦合关系纳入到统一方程组中。

  5. 构建统一方程组:

     基于能量守恒定律(节点方程)和能路特性(支路方程),构建描述整个IES稳态运行状态的非线性方程组。方程组的变量包括各节点的能量势差和各支路的能量流。

  6. 方程组求解:

     求解上述非线性方程组,得到IES的稳态潮流分布。常用的求解方法包括牛顿-拉夫逊法、稀疏矩阵技术等。

基于统一能路理论构建的稳态潮流计算模型,能够有效地处理IES中不同能源网络之间的耦合关系,实现多能流的统一计算。与传统分领域计算方法相比,这种方法具有更好的收敛性和更高的计算效率,尤其是在IES规模扩大和耦合程度加深的情况下。

2. IES动态潮流计算模型构建

稳态潮流计算关注的是系统在稳定状态下的运行,而实际的IES运行中,负荷、电源出力、系统运行状态等都可能发生变化。动态潮流计算旨在分析系统在这些变化过程中的动态响应,预测系统的瞬态行为,并评估系统的稳定性。例如,突然的负荷变化、电源故障或设备故障等都可能导致系统状态的波动。对IES进行准确的动态潮流分析,对于评估系统的鲁棒性、规划动态控制策略以及预防潜在的系统失稳至关重要。

与稳态分析不同,IES的动态潮流计算需要考虑系统参数的时间演变,包括能量的传输延迟、储能设备的动态特性以及控制系统的响应等。基于统一能路理论,动态潮流计算模型可以在稳态模型的基础上,引入时间变量和描述系统动态特性的微分方程。

动态潮流计算模型的构建步骤如下:

  1. 引入时间变量:

     将稳态潮流计算模型中的能量势差、能量流等变量视为时间的函数。

  2. 考虑动态特性:

     在能路模型中引入描述能量传输延迟、惯性等动态特性的微分方程或差分方程。例如,在天然气管道中,天然气的流动存在传输延迟,需要用偏微分方程来描述。在电力系统中,发电机转子运动方程等反映了系统的动态特性。

  3. 储能设备动态模型:

     建立储能设备的动态模型,描述其能量存储/释放速率与充放电功率、荷电状态等变量之间的关系。储能设备通常具有一定的响应时间和充放电限制。

  4. 控制系统模型:

     考虑IES中各种控制系统的动态特性,例如电压控制、频率控制、压力控制、温度控制等。这些控制系统的作用是对系统状态进行调节,影响系统的动态响应。

  5. 构建动态方程组:

     将稳态方程组扩展为包含微分方程或差分方程的动态方程组。这个方程组描述了IES在时间维度上的状态演变。

  6. 方程组求解:

     求解上述动态方程组,得到IES在一段时间内的动态潮流变化。常用的求解方法包括数值积分法(如欧拉法、龙格-库塔法等)。

基于统一能路理论构建的动态潮流计算模型,能够将不同能源网络的动态特性统一在一个框架下进行分析。这使得我们可以更好地理解IES中不同能量域之间的动态耦合关系,例如电力系统波动如何影响天然气系统的压力,或天然气系统的故障如何波及电力系统。通过动态潮流计算,可以评估系统对各种扰动的响应能力,优化动态控制策略,并进行系统的稳定性分析。例如,可以分析在极端负荷或故障情况下,IES是否能够维持稳定运行,以及需要采取哪些措施来增强系统的韧性。

3. 稳态与动态潮流计算的应用与挑战

稳态与动态潮流计算是IES分析与优化的基础工具,其应用场景广泛:

  • 规划与设计:

     在IES的规划阶段,通过稳态潮流计算可以评估不同拓扑结构、设备配置方案对系统潮流分布的影响,优化设备选型和容量配置,提高系统运行效率和可靠性。动态潮流计算则可以评估规划方案在动态运行条件下的性能,确保系统具备足够的鲁棒性。

  • 运行与控制:

     在IES的运行阶段,稳态潮流计算可以用于在线潮流监测,帮助运行人员了解系统实时运行状态,发现潜在问题。动态潮流计算则可以用于预测系统未来一段时间的运行状态,指导动态控制策略的制定,如负荷预测、最优潮流控制、协调控制等,以提高系统的运行效率和稳定性。

  • 故障分析与恢复:

     在IES发生故障时,动态潮流计算可以用于分析故障对系统的影响范围和程度,评估系统的连锁反应,并为故障恢复策略的制定提供依据。

  • 市场交易与优化:

     潮流计算结果是能源市场交易和优化调度的重要输入。准确的潮流计算可以为市场参与者提供可靠的运行信息,优化资源配置,降低运行成本。

尽管统一能路理论为IES的潮流计算提供了强大的框架,但也面临一些挑战:

  • 模型精度与复杂性:

     如何在保证模型精度的前提下,降低模型的复杂性,提高计算效率,是需要持续研究的问题。特别是动态模型,需要考虑各种非线性因素和时间延迟,模型的建立和求解都具有一定的挑战性。

  • 参数辨识与数据获取:

     构建准确的潮流计算模型需要大量的系统参数和实时运行数据。如何有效地获取和处理这些数据,并进行模型参数的辨识,是实际应用中的难点。

  • 多尺度耦合问题:

     IES中存在不同时间尺度和空间尺度的物理过程,例如电力系统的快速动态与天然气系统的慢速动态。如何将这些不同尺度的过程在一个统一的框架下进行建模和分析,是需要进一步探索的方向。

  • 不确定性处理:

     IES的运行受到负荷、可再生能源出力等不确定性因素的影响。如何在潮流计算中考虑这些不确定性,进行鲁棒性分析和风险评估,是未来研究的重要方向。

4. 结论与展望

综合能源系统分析的统一能路理论为IES的潮流计算提供了一种统一、高效的方法。通过将不同能源网络的物理特性映射到抽象的能路模型中,可以构建跨能量域的稳态与动态潮流计算模型,有效解决传统分领域计算带来的协同难题。稳态潮流计算为IES的规划设计和运行监测提供了基础,而动态潮流计算则为系统的动态分析、控制策略制定和稳定性评估提供了关键支持。

尽管面临一些挑战,但随着理论研究的深入和计算技术的进步,基于统一能路理论的IES潮流计算必将在未来的能源系统中发挥越来越重要的作用。未来的研究可以进一步探索:

  • 更加精确和高效的能路模型:

     针对不同类型的能源设备和传输路径,建立更加精细和准确的能路模型,提高计算精度。

  • 多尺度建模与协同仿真:

     发展能够处理多尺度动态过程的建模与仿真方法,实现IES中不同能量域的协同仿真。

  • 基于数据的模型校正与参数辨识:

     利用大数据和机器学习技术,对潮流计算模型进行在线校正和参数辨识,提高模型的准确性。

  • 不确定性潮流计算与风险评估:

     发展能够处理不确定性因素的潮流计算方法,进行IES的鲁棒性分析和风险评估。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 陈彬彬,孙宏斌,吴文传,等.综合能源系统分析的统一能路理论(三): 稳态与动态潮流计算[J].中国电机工程学报, 2020, 40(15):11.DOI:10.13334/j.0258-8013.pcsee.200647.

[2] 王艳玲.基于扩展潮流电网输电能力计算的理论研究[D].山东大学,2012.DOI:10.7666/d.Y2180119.

[3] 常冀闫.500kV统一潮流控制器电磁暂态建模与故障过电压仿真研究[D].中国电力科学研究院,2019.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值