✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在数字通信系统中,信息以离散的比特序列形式进行传输。然而,为了有效地在连续信道上传输这些离散的比特,需要将它们转换为模拟波形。这个转换过程被称为调制,而将数字比特序列转换为适合传输的模拟波形的关键一步是脉冲整形。脉冲整形旨在通过控制发送波形的形状和频谱特性,来减小平稳信道传输中固有的码间干扰(Inter-Symbol Interference, ISI)和提高频谱利用率。在评估数字通信系统的性能时,**误码率(Bit Error Rate, BER)**是一个至关重要的指标,它衡量了接收端错误接收的比特占总发送比特数的比例。本文将深入探讨在考虑脉冲整形因素的误码率分析中,比特误码率的具体体现和影响,并阐述脉冲整形如何影响误码率,以及常见的脉冲整形技术如何降低误码率。
一、误码率(BER)的定义与重要性
误码率(BER)被定义为在一段时间内或一组数据中,错误接收的比特数与总发送的比特数之比。它是一个衡量通信系统可靠性的重要指标,BER值越低,表示系统传输信息的准确性越高。在数字通信系统中,误码的产生是由于多种因素共同作用的结果,主要包括:
- 信道噪声:
信道中普遍存在的随机噪声会叠加在传输信号上,使得接收信号发生畸变,导致判决错误。
- 码间干扰(ISI):
由于信道的有限带宽和多径传播等因素,前一个码元的波形可能会拖尾并干扰后一个码元的接收,使得接收端无法准确区分相邻的码元,从而产生误码。
- 带间干扰(ADI):
如果多个用户在同一频段内传输信号,且彼此的信号没有得到有效隔离,就会产生带间干扰,影响信号的正确接收。
- 非线性失真:
发射端、信道或接收端设备可能存在的非线性特性会引起信号波形的失真,导致误码。
误码率的分析是数字通信系统设计和性能评估的核心内容。通过分析误码率,可以确定系统在特定信道条件下的传输性能,并指导系统参数的选择和优化,例如发射功率、调制方式、编码方式以及本文着重讨论的脉冲整形技术。
二、脉冲整形的作用与原理
如前所述,为了在连续信道上传输离散的比特,需要将比特序列转换为连续的模拟波形。最简单的转换方式是直接将每个比特转换为一个矩形脉冲。然而,矩形脉冲的频谱是无限宽的,这会导致严重的带间干扰和难以实现有效的滤波。为了解决这个问题,引入了脉冲整形技术。
脉冲整形的基本原理是,在发送端对数字信号的基带脉冲进行滤波,使其具有特定的形状和频谱特性。理想的脉冲整形滤波器应该满足以下条件:
- 消除或减小码间干扰(ISI):
接收到的脉冲在采样时刻只与当前发送的码元有关,而与其他码元无关。
- 频谱效率高:
脉冲的频谱尽可能地集中在有限的频带内,以便于在有限带宽的信道中传输,并减少对其他用户的干扰。
- 易于实现:
脉冲整形滤波器应该易于设计和实现。
常见的脉冲整形技术包括:
- 升余弦(Raised Cosine)脉冲整形:
这是一种常用的脉冲整形技术,通过在频域上使用升余弦滚降滤波器,可以有效地控制脉冲的带宽和抑制码间干扰。升余弦滤波器的滚降系数(roll-off factor)决定了频谱的带宽和脉冲的拖尾程度。滚降系数越小,频谱越窄,但脉冲的拖尾越长,对同步要求越高;滚降系数越大,频谱越宽,但脉冲的拖尾越短,对同步要求较低。
- 高斯(Gaussian)脉冲整形:
高斯脉冲具有平滑的波形和较好的频谱特性,但其拖尾是无限长的,理论上无法完全消除码间干扰。然而,在实际应用中,可以通过截断高斯脉冲来近似理想的脉冲整形。
- 其他脉冲整形技术:
除了升余弦和高斯脉冲整形,还有平方根升余弦(Root-Raised Cosine)脉冲整形、砖墙滤波器(Brick-wall Filter)等。平方根升余弦滤波器通常与接收端的匹配滤波器配合使用,以实现整体的升余弦响应。
三、考虑脉冲整形因素的误码率分析
在考虑脉冲整形因素的误码率分析中,比特误码率的计算变得更为复杂,因为它不再仅仅取决于信道噪声的强度,还会受到脉冲整形引入的码间干扰(如果未完全消除)以及脉冲频谱特性对信道影响的共同作用。
- 脉冲整形对ISI的影响与误码率:
理想的脉冲整形技术旨在实现无ISI传输。无ISI传输的条件是,发送脉冲经过信道(理想信道或经过均衡后的信道)后,在接收端的采样时刻,只存在当前发送码元的信号,而其他码元的信号为零。在无ISI的理想情况下,误码率的计算主要取决于信道噪声的强度和信号的能量。例如,对于二进制相移键控(BPSK)系统,在加性高斯白噪声(AWGN)信道下,无ISI时的理论误码率为:
Pb=Q(2EbN0)
然而,在实际系统中,由于信道的不理想性、滤波器设计误差、采样定时偏差等因素,脉冲整形可能无法完全消除ISI。残留的ISI会叠加在接收信号上,使得判决阈值不再清晰,从而增加误码的概率。在这种情况下,误码率的计算需要考虑ISI的影响。ISI可以被视为一种额外的噪声,它与发送的比特序列有关。因此,带有ISI的误码率分析通常需要借助更复杂的数学模型或仿真方法。例如,可以利用眼图来评估ISI的严重程度,眼图的张开程度反映了ISI的大小。眼图越“闭合”,ISI越严重,误码率越高。
- 脉冲整形对频谱效率的影响与误码率:
脉冲整形技术通过控制脉冲的频谱特性,可以有效地提高频谱利用率。例如,升余弦脉冲整形通过调整滚降系数,可以将信号的能量限制在较小的频带内。在有限带宽的信道中,如果脉冲的频谱超出了信道带宽,将会导致信号失真和带间干扰,从而增加误码率。合适的脉冲整形可以使得信号频谱与信道特性相匹配,减少频谱泄漏和干扰,从而降低误码率。
同时,频谱效率的提高也意味着在相同的带宽下可以传输更多的信息。这在一定程度上是误码率和频谱效率之间的权衡。为了在有限带宽下获得较低的误码率,可能需要采用更鲁棒的调制方式或更复杂的编码方案,但这通常会降低频谱效率。脉冲整形作为一种基带处理技术,可以在调制之前或之后进行,它与调制方式的选择是相辅相成的。
- 接收端的匹配滤波与误码率:
在考虑脉冲整形的系统中,接收端通常会采用匹配滤波器(Matched Filter)。匹配滤波器的冲激响应是发送脉冲波形的复共轭时间反转。理想的匹配滤波器可以在接收到的带有噪声的信号中最大化信号的信噪比(SNR),从而提高判决的准确性,降低误码率。
当发送端采用脉冲整形滤波器,且信道是理想的AWGN信道时,如果接收端采用与发送脉冲整形滤波器匹配的滤波器,则在采样时刻可以实现最大的输出信噪比,从而获得最低的误码率。例如,如果发送端采用平方根升余弦滤波器进行脉冲整形,则接收端也应采用平方根升余弦滤波器作为匹配滤波器,两者串联起来的总体响应是升余弦响应,可以有效地抑制ISI。
四、常见脉冲整形技术对误码率的影响分析
- 矩形脉冲整形:
正如前面提到的,矩形脉冲的频谱是无限宽的,在有限带宽信道中传输会产生严重的ISI。因此,采用矩形脉冲整形会导致较高的误码率,尤其是在带宽受限的信道中。
- 升余弦脉冲整形:
升余弦脉冲整形通过引入滚降系数,可以有效地控制频谱带宽并减小ISI。滚降系数的选择是误码率和频谱效率之间的权衡。较小的滚降系数可以提高频谱效率,但对同步要求更高,且对信道失真的鲁棒性较差;较大的滚降系数虽然频谱效率较低,但对同步要求较低,且对信道失真有一定的鲁棒性。在实际应用中,通常选择一个合适的滚降系数来平衡误码率和频谱效率。
- 平方根升余弦脉冲整形:
通常与接收端的匹配滤波器配合使用,以实现无ISI传输和最大化输出信噪比。这是一种在数字通信系统中广泛使用的脉冲整形技术,因为它能够在保证频谱效率的同时获得较低的误码率。
五、结论
综上所述,在数字通信系统中,脉冲整形是影响误码率的关键因素之一。通过对发送信号进行合适的脉冲整形,可以有效地减小或消除码间干扰,提高频谱利用率,从而降低比特误码率,提高通信系统的可靠性。误码率的分析在考虑脉冲整形因素时,需要综合考虑脉冲整形引入的ISI、脉冲频谱特性与信道特性的匹配以及接收端匹配滤波器的作用。不同的脉冲整形技术对误码率的影响各不相同,在系统设计中需要根据具体的应用场景和信道特性选择合适的脉冲整形方案。
对于工程师和研究人员而言,深入理解脉冲整形对误码率的影响,对于设计高性能的数字通信系统至关重要。未来的研究方向可以包括探索更先进的脉冲整形技术,例如基于机器学习的自适应脉冲整形,以进一步提高系统性能,降低误码率,并在日益复杂的通信环境中实现更可靠的信息传输。
⛳️ 运行结果
🔗 参考文献
[1] 赵雪.基于概率整形调制技术的短距离光通信系统研究[D].华侨大学,2021.
[2] 王旭,王中宇,毛方儒,等.自由空间无衍射光通信模拟系统及其传输性能[J].应用光学, 2012, 33(3):5.DOI:10.5768/JAO201233.0308003.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇