✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
旋转机械作为现代工业中不可或缺的关键设备,其稳定可靠运行对于保障生产效率和安全至关重要。轴承作为旋转机械的核心部件之一,其故障是导致设备停机和损坏的主要原因。轴承故障的早期诊断和预测能够有效避免重大事故的发生,降低维护成本。传统的轴承故障诊断方法,如时域分析、频域分析和时频分析等,在面对复杂工况下(例如变速、变载荷等)的非平稳信号时,往往存在局限性。近年来,先进信号处理技术的不断发展为轴承故障诊断带来了新的突破。时间重分配多同步挤压变换(Time Reassignment Multi-synchrosqueezing Transform,简称TRMSST)作为一种新兴的时频分析方法,以其卓越的信号能量聚焦能力和抗噪声性能,在旋转机械轴承故障诊断领域展现出巨大的应用潜力。
传统时频分析方法的局限性
轴承故障信号通常表现为具有冲击性和重复性的非平稳信号。传统的时频分析方法,如短时傅里叶变换(STFT)和连续小波变换(CWT),虽然能够提供信号在时间和频率上的联合表示,但存在各自的局限性。STFT由于使用固定窗函数,在时间分辨率和频率分辨率之间存在trade-off,无法同时获得高精度的时间和频率信息。对于包含瞬时冲击信号的轴承故障信号,STFT容易出现能量弥散,时频图上的故障特征模糊。CWT虽然通过尺度伸缩实现了多分辨率分析,对非平稳信号具有更好的适应性,但也存在能量弥散问题,尤其是在处理多分量信号时,交叉项干扰容易影响特征提取的准确性。此外,传统时频分析方法对噪声较为敏感,噪声干扰会进一步模糊故障特征,增加诊断难度。
时间重分配多同步挤压变换的理论基础
为了克服传统时频分析方法的不足,同步挤压变换(Synchrosqueezing Transform,SST)应运而生。SST的核心思想是通过将连续小波变换的时频表示中的能量沿频率方向进行“挤压”,将其重新分配到瞬时频率所在的精确位置。这有效地提高了频率分辨率,使得多分量信号的瞬时频率能够被清晰地分辨出来,减少了能量弥散和交叉项干扰。然而,标准的SST只在频率方向进行挤压,而没有考虑时间方向的能量弥散。
TRMSST在SST的基础上进一步引入了时间重分配的思想。它不仅在频率方向进行能量挤压,还根据信号的瞬时频率和群延迟信息,在时间方向对能量进行重新分配。通过时间和频率上的双重重分配,TRMSST能够将信号能量更精确地聚焦在瞬时时间和瞬时频率所在的二维时频平面上。这使得信号的时频表示更加清晰锐利,对多分量信号和包含瞬时成分的信号具有极高的分辨率。此外,TRMSST采用多同步挤压的技术,通过迭代的重分配过程,进一步提升了信号能量的聚焦效果和抗噪声能力。其理论基础建立在信号的瞬时频率和群延迟估计的准确性上,通过对连续小波变换结果的相位信息进行分析,可以精确估计信号的局部特性,从而实现高效的能量重分配。
TRMSST在旋转机械轴承故障诊断中的应用优势
TRMSST凭借其卓越的时频聚焦能力,在旋转机械轴承故障诊断中展现出以下显著优势:
- 高分辨率的时频表示:
TRMSST能够生成高分辨率的时频图,清晰地揭示轴承故障信号的瞬时冲击成分和其重复性,使得故障特征在时频平面上以清晰的线条或点状形式呈现,易于观察和识别。
- 有效抑制能量弥散和交叉项:
相较于传统的时频分析方法,TRMSST显著减少了能量在时频平面上的弥散,降低了多分量信号之间的交叉项干扰,使得不同故障特征能够被清晰地区分开来。
- 增强的抗噪声能力:
TRMSST的重分配过程具有一定的噪声抑制作用,能够将信号能量从噪声干扰中分离出来,提高故障特征的信噪比,即使在低信噪比环境下也能有效提取故障信息。
- 精确的瞬时频率和群延迟估计:
TRMSST能够准确估计轴承故障信号的瞬时频率和群延迟,这对于分析故障冲击的重复性、判断故障类型(例如内圈故障、外圈故障、滚动体故障)以及确定故障位置具有重要意义。
- 适用于复杂工况:
TRMSST对非平稳信号具有良好的处理能力,能够应对旋转机械在变速、变载荷等复杂工况下产生的非线性、非平稳振动信号,提高了故障诊断的准确性和鲁棒性。
TRMSST在轴承故障诊断中的具体应用流程
TRMSST在旋转机械轴承故障诊断中的典型应用流程如下:
- 数据采集:
利用振动传感器或其他合适的传感器(如声发射传感器、温度传感器等)采集旋转机械轴承的振动或其他相关信号。采集频率应高于信号的最高频率成分。
- 信号预处理:
对采集到的原始信号进行必要的预处理,包括滤波、去趋势等,以去除工频干扰、传感器偏置等噪声。
- TRMSST分析:
将预处理后的信号输入TRMSST算法,计算信号的时频表示。选择合适的连续小波函数和参数,进行时间和频率上的重分配,生成高分辨率的TRMSST时频图。
- 特征提取:
从TRMSST时频图中提取与轴承故障相关的时频特征。常见的特征包括:
- 故障冲击的时频轨迹:
观察时频图上是否出现与故障冲击频率及其谐波相对应的清晰时频轨迹。
- 故障冲击的重复性:
分析时频图上冲击成分的重复间隔,判断是否与轴承故障的特征频率相符。
- 能量分布特性:
分析能量在不同频率上的分布情况,判断是否存在异常的能量聚集。
- 瞬时频率和群延迟变化:
提取故障冲击的瞬时频率和群延迟信息,分析其随时间的变化规律。
- 故障冲击的时频轨迹:
- 故障诊断:
将提取的故障特征与已知轴承故障类型的特征进行比较,判断轴承是否发生故障以及故障类型。可以结合机器学习算法(如支持向量机、神经网络等)对提取的特征进行分类,实现自动化故障诊断。
- 故障程度评估和预测:
根据故障特征的强度、数量和变化趋势,评估故障的严重程度,并结合历史数据和趋势预测模型,对故障的发展趋势进行预测。
TRMSST应用案例与实验研究
近年来,国内外许多研究机构和学者对TRMSST在旋转机械轴承故障诊断中的应用进行了深入研究,并取得了显著成果。大量实验研究表明,TRMSST能够有效识别不同类型(如内圈、外圈、滚动体、保持架)和不同程度的轴承故障,尤其在低信噪比和变速变载荷等复杂工况下表现出优于传统方法的性能。例如,研究人员利用TRMSST对变速工况下的轴承振动信号进行分析,成功提取了与故障相关的瞬时频率,并准确诊断了故障类型。在低信噪比环境下,TRMSST生成的时频图仍能清晰显示故障特征,提高了诊断的准确率。这些应用案例充分证明了TRMSST在轴承故障诊断领域的有效性和优越性。
结论与展望
时间重分配多同步挤压变换作为一种先进的时频分析方法,以其卓越的信号能量聚焦能力和抗噪声性能,为旋转机械轴承故障诊断提供了强有力的工具。它克服了传统时频分析方法在处理非平稳信号时的局限性,能够生成高分辨率的时频表示,清晰地揭示故障特征,提高诊断的准确性和鲁棒性。随着对TRMSST理论和算法的不断深入研究,以及其在实际工程中的广泛应用,TRMSST有望成为旋转机械轴承故障诊断领域的重要技术手段。
未来的研究方向可以包括:
- TRMSST算法的优化:
进一步优化TRMSST算法,提高其计算效率,使其更适用于实时在线监测。
- 与其他信号处理技术的融合:
将TRMSST与深度学习、迁移学习等技术相结合,构建更智能化、自适应的故障诊断模型。
- 多传感器信息融合:
结合TRMSST对来自不同类型传感器的数据进行分析,实现多源信息的融合诊断,提高诊断的全面性和准确性。
- TRMSST在其他工业设备故障诊断中的应用:
将TRMSST的应用范围拓展到其他旋转机械和工业设备的故障诊断中,发挥其在处理非平稳信号方面的优势。
⛳️ 运行结果
🔗 参考文献
[1] 杨志鹏,陈秀清,张御阳,等.基于MATLAB的定点形变观测数据时频分析软件设计及应用研究[J].震灾防御技术, 2022(001):017.
[2] 杨杰豹.基于小波变换的微电网谐波检测与抑制研究[D].太原科技大学,2022.
[3] 罗威.SCH350A型挤压铸造机液压系统改进关键技术的仿真研究[D].广东工业大学,2016.DOI:10.7666/d.Y3041997.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇