一种欠定盲源分离方法及其在模态识别中的应用附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文深入探讨了一种用于处理欠定情形的盲源分离(Underdetermined Blind Source Separation, UBSS)方法,并着重阐述了其在结构动力学模态识别领域的应用。传统盲源分离方法通常依赖于独立性假设和观测信号数量大于或等于源信号数量的条件,然而在实际工程应用中,特别是对于复杂结构,观测传感器数量往往受限,导致出现观测信号少于源信号的欠定情况。本文提出了一种基于稀疏性和联合稀疏性的UBSS方法,通过利用源信号在特定变换域中的稀疏特性以及不同传感器观测到的信号之间的联合稀疏性,实现了在欠定条件下对源信号的有效分离与重构。进一步,本文将所提出的UBSS方法应用于结构振动响应信号的分析,旨在从混合的结构响应信号中分离出反映不同模态特性的独立模态响应,进而实现结构的模态参数识别。通过仿真实验和实际工程数据的验证,证明了该方法在提高模态识别精度和鲁棒性方面的有效性。

关键词: 欠定盲源分离;稀疏性;联合稀疏性;模态识别;结构动力学;独立分量分析

引言

盲源分离(Blind Source Separation, BSS)是信号处理领域的一个重要分支,其目标是在不知道混合系统特性和源信号先验信息的情况下,仅通过观测到的混合信号来估计出原始的独立源信号。自独立分量分析(Independent Component Analysis, ICA)提出以来,BSS理论和方法得到了迅速发展,并在语音分离、图像处理、生物医学信号分析等领域取得了广泛应用。然而,传统的BSS方法,如基于独立性或非高斯性的ICA,通常假定观测信号数量(传感器数量)大于或等于源信号数量,即满足定定或超定条件。

在许多实际工程应用中,例如大规模结构健康监测、复杂声场分析、多径通信等,由于成本、空间限制或传感器故障等因素,能够获得的观测信号数量往往少于潜在的源信号数量,即存在欠定盲源分离问题(Underdetermined Blind Source Separation, UBSS)。欠定条件下,经典的BSS方法由于缺乏足够的观测信息而失效,因为求解混合矩阵和源信号是一个欠定的线性方程组,存在无穷多组解。因此,研究欠定条件下的盲源分离方法具有重要的理论意义和实际应用价值。

近年来,基于稀疏性假设的UBSS方法成为了研究热点。许多自然信号,如音频信号、图像、振动信号等,在合适的变换域(例如时频域、小波域等)具有稀疏性,即大部分系数为零或接近于零。利用这一特性,UBSS问题可以转化为一个稀疏表示或稀疏重构问题。常见的基于稀疏性的UBSS方法包括时频分析结合聚类、稀疏成分分析(Sparse Component Analysis, SCA)等。这些方法通过在变换域寻找数据的稀疏表示来估计源信号。

另一方面,结构动力学中的模态分析是识别结构动力学特性的关键技术。结构的振动响应通常是不同模态响应的叠加。传统的模态识别方法,如频域分解(Frequency Domain Decomposition, FDD)、随机子空间识别(Stochastic Subspace Identification, SSI)等,通常需要假设模态之间是独立的或 weakly correlated。然而,在存在模态耦合、非线性效应或环境激励复杂的情况下,这些假设可能不再成立。将盲源分离技术应用于结构振动信号分析,可以尝试从混合的振动响应中分离出独立的模态响应,从而提高模态识别的准确性和鲁棒性。

本文的目的是提出一种适用于处理欠定结构振动响应信号的盲源分离方法,并将其应用于结构的模态识别。考虑到结构不同位置的振动响应往往具有相似的模态成分,但受不同传感器位置和局部特性的影响,它们可能表现出一定的联合稀疏性。因此,本文提出一种基于稀疏性和联合稀疏性的UBSS方法,该方法通过在合适的变换域利用信号的稀疏性以及不同观测信号之间的联合稀疏性来求解欠定BSS问题。接着,将分离出的源信号解释为独立的模态响应,并基于这些模态响应进行模态参数识别。

本文的结构安排如下:第二部分介绍欠定盲源分离问题及其数学模型;第三部分详细阐述所提出的基于稀疏性和联合稀疏性的UBSS方法,包括信号变换、稀疏表示、联合稀疏性建模以及源信号重构等关键步骤;第四部分讨论如何将该UBSS方法应用于结构模态识别,包括振动响应信号的预处理、UBSS处理以及模态参数识别步骤;第五部分通过仿真实验验证方法的有效性,并与传统方法进行比较;第六部分将方法应用于实际工程结构的模态识别,分析其性能;最后,第七部分总结全文,并展望未来的研究方向。

欠定盲源分离问题

图片

图片

图片

然而,上述基于单信号稀疏性的方法在处理UBSS问题时仍然面临挑战,例如混合矩阵的估计、源信号的排列模糊和尺度模糊等问题。此外,当源信号稀疏性不够强或混合矩阵条件不好时,恢复性能会下降。

基于稀疏性和联合稀疏性的欠定盲源分离方法

为了进一步提高欠定盲源分离的性能,本文提出一种结合稀疏性和联合稀疏性的方法。联合稀疏性是指多个信号在某个变换域中,它们的非零或显著非零系数出现在相似的位置。在结构动力学中,不同传感器测量的振动响应包含了相同的模态成分,这些模态成分在时频域可能具有共同的支撑集(support),即在相似的时间和频率点上表现出显著的能量。利用这种联合稀疏性,可以为UBSS问题引入额外的约束。

本文提出的UBSS方法主要包括以下步骤:

3.1 信号变换和时频分析

图片

3.2 基于时频点的聚类和混合矩阵估计

图片

3.3 利用联合稀疏性进行源信号分离和重构

图片

图片

具体步骤如下:

    图片

    图片

    欠定盲源分离方法在模态识别中的应用

    结构的振动响应信号是其不同模态响应的线性叠加。在理想情况下,结构的自由振动响应可以表示为:

    x(t)=∑k=1Nϕkak(t)

    图片

    然而,直接将振动响应信号作为输入进行UBSS处理存在一些挑战:

    1. 模态响应的非独立性:

       在某些情况下,特别是当存在强环境激励或非线性效应时,模态响应之间可能存在一定的相关性,不完全满足独立性假设。

    2. 模态响应的非高斯性:

       模态响应通常是简谐信号,不一定是非高斯的,这可能影响某些基于非高斯性的BSS方法。

    3. 欠定问题:

       结构的模态数量通常远大于传感器数量,导致典型的UBSS问题。

    本文提出的基于稀疏性和联合稀疏性的UBSS方法可以有效地解决上述挑战。结构模态响应在时频域通常具有稀疏性,其能量集中在以各阶固有频率为中心的窄带上。同时,不同传感器在同一模态下的响应具有相同的频率和阻尼特性,表现出一定的联合稀疏性。

    将本文提出的UBSS方法应用于模态识别的步骤如下:

    4.1 振动响应信号的采集与预处理

    通过布设传感器(加速度计、位移计等)采集结构的振动响应信号。对采集到的信号进行必要的预处理,例如滤波、去除趋势项等。

    4.2 欠定盲源分离处理

    图片

    4.3 模态参数识别

    图片

    • 时域方法:

       例如,对自由衰减响应进行对数衰减法或柯西波分析。

    • 频域方法:

       对模态响应进行傅里叶变换,通过谱峰分析确定固有频率。

    • 时频分析方法:

       利用小波分析或Hilbert-Huang变换等对模态响应进行分析,获得时变的模态参数。

    图片

    实际工程应用

    将本文提出的UBSS方法应用于实际工程结构(例如,桥梁、高层建筑等)的振动响应数据分析。在结构的关键位置布设有限数量的传感器采集环境激励下的结构振动响应。由于传感器数量有限,且结构的模态数量较多,这是一个典型的欠定盲源分离问题。

    对采集到的实际数据进行预处理后,应用本文提出的UBSS方法进行处理。分离出独立的源信号,并分析其时频特性。通过分析分离出的源信号的时频谱峰值,识别出结构的固有频率。通过对分离出的源信号应用时域或时频分析方法,估计其阻尼比。将估计的混合矩阵列向量视为模态振型,并进行可视化分析。

    与传统的模态识别方法(例如,频域分解 FDD 或随机子空间识别 SSI)进行比较。比较指标包括:识别出的模态数量、识别的固有频率和阻尼比的稳定性、以及模态振型的物理合理性。

    实际工程应用结果表明,本文提出的UBSS方法能够有效地从环境激励下的结构振动响应中分离出具有物理意义的独立分量,这些分量对应于结构的独立模态响应。与传统方法相比,该方法在欠定条件下能够识别出更多阶的模态,并且识别的模态参数具有更高的精度和鲁棒性。尤其对于密集模态或存在一定程度相关性的模态,本文方法表现出更好的分离能力。

    然而,在实际应用中,也存在一些挑战。例如,实际环境激励的复杂性、噪声的影响、以及结构的非线性效应都可能影响方法的性能。未来的工作将进一步研究如何提高方法对噪声和非线性的鲁棒性。

    结论

    本文提出了一种基于稀疏性和联合稀疏性的欠定盲源分离方法,并成功将其应用于结构动力学模态识别。该方法通过利用源信号在变换域的稀疏性以及不同观测信号之间的联合稀疏性,有效地解决了传统BSS方法在欠定条件下失效的问题。将该方法应用于结构振动响应信号分析,能够从混合的响应中分离出独立的模态响应,并估计出模态振型。仿真实验和实际工程应用结果均表明,该方法在提高欠定条件下模态识别的精度和鲁棒性方面具有显著优势。

    本文的研究为欠定条件下结构模态识别提供了一种新的有效途径。然而,未来的研究仍需进一步探索如何提高方法对强噪声和非线性效应的鲁棒性,研究更有效的联合稀疏性建模和优化算法,以及将该方法拓展到时变系统的模态识别中。

    ⛳️ 运行结果

    图片

    图片

    图片

    图片

    图片

    🔗 参考文献

    [1] 李志农,吕亚平,范涛,等.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报, 2009(8):7.DOI:10.1007/978-0-387-74660-9_12.

    [2] 白树忠.欠定盲源分离算法及在语音处理中的应用研究[D].山东大学[2025-05-19].DOI:10.7666/d.y1421769.

    [3] 黄书华,卓东风,郭一娜.一种自适应单入多出盲源分离方法[J].计算机应用与软件, 2013, 30(8):4.DOI:10.3969/j.issn.1000-386x.2013.08.045.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇 

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值