✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着信息技术的飞速发展,数据中心作为支撑现代社会运转的关键基础设施,其能耗问题日益突出。构建绿色、高效的数据中心已成为当前研究热点。数据中心微网作为一种有效的解决方案,通过整合分布式电源、储能系统和可控负荷,提高了能源利用效率和供电可靠性。然而,数据中心微网在实际运行中面临着诸多不确定性因素,例如可再生能源输出波动、负荷需求变化以及市场电价波动等,这些不确定性给微网的优化运行带来了严峻挑战。传统的确定性规划方法难以有效应对这些不确定性,可能导致规划方案在实际运行中表现不佳甚至不可行。因此,研究考虑不确定性的数据中心微网鲁棒规划方法具有重要的理论意义和实际价值。本文聚焦于考虑灵活性的数据中心微网两阶段鲁棒规划方法,旨在构建一个能够有效应对不确定性,同时充分利用微网内部灵活性资源,提高系统鲁棒性和经济性的规划模型。
关键词: 数据中心微网;鲁棒优化;两阶段规划;灵活性;不确定性;能源管理
引言
数据中心作为现代社会的信息枢纽,承载着海量的计算、存储和网络任务。其能源消耗占全球总能源消耗的比重不断攀升,带来了巨大的经济和环境压力。为了降低数据中心的能源消耗和碳排放,构建绿色、高效的能源供应系统已成为当务之急。数据中心微网通过整合分布式电源(如光伏、风电)、储能系统(如电池储能)、可控负荷(如非关键IT设备、冷却系统)以及与外部电网的连接,形成了一个相对独立的能源管理单元。与传统的集中式供电模式相比,数据中心微网具有提高供电可靠性、降低输配电损耗、促进可再生能源消纳以及参与需求侧响应等诸多优势。
然而,数据中心微网的实际运行环境充满不确定性。可再生能源发电出力受天气条件影响显著,具有间歇性和波动性;数据中心的IT负荷和冷却负荷随业务需求和环境温度变化而波动;市场电价受电力供需关系、燃料价格和政策因素影响,呈现出复杂的变化规律。这些不确定性因素若未在规划阶段得到充分考虑,可能导致微网的运行偏离最优状态,甚至引发系统失稳。例如,低估可再生能源出力可能导致过度依赖电网,增加运行成本;高估负荷需求可能导致储能容量不足,影响供电可靠性;预测偏差过大可能导致电力交易策略失误,带来经济损失。
为了应对这些不确定性,研究人员提出了多种优化方法,包括随机优化、模糊优化和鲁棒优化等。随机优化需要获取不确定性变量的概率分布信息,但精确获取这些信息往往是困难的,且当概率分布不准确时,优化结果可能并不可靠。模糊优化适用于处理模糊和不精确的信息,但对不确定性的边界信息要求较高。鲁棒优化则是一种基于最坏情况分析的优化方法,它不依赖于不确定性变量的概率分布,而是假定不确定性变量在其预定的不确定性集中取任何可能的值,并优化使得目标函数在所有可能的最坏情况下达到最优。这种方法能够保证系统在最恶劣的情况下依然能够稳定运行,具有较强的鲁棒性。
传统的鲁棒优化方法往往假设所有不确定性在规划阶段都已确定,这忽略了微网系统在运行过程中所具备的调整和应对不确定性的能力。数据中心微网内部存在多种灵活性资源,例如储能系统的充放电功率、可控负荷的调节能力以及与电网的互动能力等。这些灵活性可以在部分不确定性信息得到更新或实现后,用于调整运行策略,从而降低不确定性带来的影响。例如,当实时预测到可再生能源出力高于预期时,可以通过增加储能充电或调整可控负荷来消纳多余电力;当负荷高于预期时,可以通过储能放电或从电网购电来满足需求。这种运行中的调整能力是数据中心微网应对不确定性的重要手段。
基于此,本文着眼于构建考虑灵活性的数据中心微网两阶段鲁棒规划方法。两阶段鲁棒优化是一种适用于存在部分决策需要在不确定性实现后进行的优化问题。第一阶段决策(例如,设备容量配置、储能容量配置)在不确定性实现前做出,具有长期性;第二阶段决策(例如,储能充放电调度、可控负荷调度、与电网的交易策略)在不确定性实现后根据实际情况进行调整,具有短期性。通过将微网的运行调整能力建模为第二阶段决策,两阶段鲁棒优化能够更好地反映系统在实际运行中的灵活性,从而获得更加经济和实际的鲁棒规划方案。
1. 数据中心微网系统模型
本文考虑的数据中心微网系统主要包含以下组件:
- 分布式电源:
包括光伏发电系统(PV)和可能的其他可再生能源(如风电)。其出力受天气条件影响,具有不确定性。
- 储能系统:
主要为电池储能系统(BES)。具有充放电能力,可以在不同时间段储存和释放电能,用于平抑可再生能源波动和进行峰谷套利。其充放电功率和荷电状态(SOC)受物理限制。
- 数据中心负荷:
主要包括IT负荷和冷却负荷。IT负荷是数据中心的核心负荷,对供电可靠性要求极高;冷却负荷用于维持数据中心内部温度适宜,以保证IT设备正常运行,其部分负荷具有可调性。数据中心总负荷具有不确定性。
- 与外部电网的连接:
微网可以通过并网点与外部电网进行电能交互,包括购电和售电。购电和售电电价可能随时间变化,具有不确定性。
- 可控负荷:
指可以根据系统运行需求进行调节的负荷,例如部分冷却设备、非关键IT设备的开启/关闭等。可控负荷的调节能力是微网重要的灵活性资源。
1.1 数学模型构建
为了构建两阶段鲁棒规划模型,需要对微网系统的各个组件进行数学建模。
2. 两阶段鲁棒规划模型
本文提出的两阶段鲁棒规划模型旨在确定第一阶段决策(设备容量配置,如储能容量)和第二阶段决策(实时运行调度,如储能充放电、可控负荷调度、与电网交易),使得在不确定性集合中的最坏情况下,系统的总成本最小。
约束条件:
- 储能系统约束:
荷电状态动态方程、充放电功率上下限、最小最大荷电状态、充放电互斥约束等,这些约束与第一阶段决策(额定容量和功率)以及第二阶段决策(充放电功率)相关。
- 数据中心负荷约束:
可控负荷的调节范围约束,保证可控负荷调整量在预设范围内。
- 电网互动约束:
购售电功率上下限约束。
- 功率平衡约束:
微网内部功率在每个时刻必须平衡。
- 非负约束:
所有功率和容量变量均为非负。
- 二进制约束:
储能充放电状态变量为二进制。
2.1 模型的求解
上述两阶段鲁棒规划模型是一个min-max-min 问题,通常难以直接求解。可以采用列和割算法(Column-and-Constraint Generation, C&CG)来解决这类问题。C&CG算法的核心思想是将原问题分解为主问题和子问题交替求解。
- 主问题:
在给定一组“最坏”不确定性场景下,求解第一阶段决策变量以及与这些场景对应的第二阶段最优响应。主问题是一个混合整数线性规划(MILP)问题。
- 子问题:
在给定第一阶段决策变量后,寻找使得内层运行成本最大的不确定性场景(即最坏情况)。子问题是一个最大化问题,其目标函数是固定第一阶段决策后的内层最小化问题的最优目标值。这个子问题可以转化为一个最大化问题,通常是一个线性规划问题(LP)或者混合整数线性规划问题(MILP),可以通过对偶理论进行转化。
C&CG算法迭代进行:主问题求解得到一组第一阶段决策和对应的运行策略;将第一阶段决策代入子问题,求解得到当前第一阶段决策下的最坏不确定性场景;将这个最坏不确定性场景作为新的“割”(新的约束)添加到主问题中,限制主问题求解范围;重复上述过程,直到子问题的最优值不再大于主问题的最优值,或达到预设的收敛条件。
2.2 考虑灵活性的建模
本文的重点在于考虑数据中心微网的灵活性。在两阶段鲁棒规划框架下,灵活性主要体现在第二阶段决策变量上。储能系统的充放电功率、可控负荷的调节量、与电网的购售电策略都是应对不确定性的灵活手段。通过将这些灵活操作建模为第二阶段决策,模型能够:
- 更准确地评估不确定性的影响:
模型不再假设不确定性一旦发生就无法应对,而是考虑了微网在运行中可以进行的调整,从而更真实地反映了不确定性对系统性能的影响。
- 更有效地利用灵活性资源:
模型优化了在不同不确定性场景下的灵活调度策略,最大限度地利用储能、可控负荷等资源的调节能力来降低运行成本和提高系统鲁棒性。
- 获得更经济的规划方案:
与传统的鲁棒优化相比,考虑灵活性的两阶段鲁棒规划通常能够获得更低的鲁棒成本。这是因为系统在应对不确定性时拥有更多的操作自由度,无需为了应对极端情况而过度配置资源。
具体来说,在子问题中求解最坏不确定性场景时,需要同时优化第二阶段的运行策略。这样,子问题实际上是在寻找这样一种不确定性组合:即使在最优的第二阶段运行策略下,系统的运行成本依然最高。这恰恰体现了鲁棒优化在最坏情况下的保守性,同时也充分利用了系统的灵活性。
3. 模型的改进与扩展
为了进一步提升模型的实用性和有效性,可以考虑以下改进与扩展:
- 更精细的不确定性建模:
除了盒式不确定性集,可以考虑更复杂的鲁棒不确定性集,如多面体不确定性集、椭球不确定性集等,以更精确地描述不确定性变量之间的相关性。
- 考虑多类型灵活性资源:
除了储能和可控负荷,还可以将其他灵活资源纳入模型,例如柴油发电机(考虑其启停成本和排放)、电动汽车的充电调度等。
- 多目标优化:
除了经济性,还可以将其他目标纳入考虑,例如供电可靠性(通过设置不允许失负荷的惩罚项)、环境效益(通过考虑碳排放成本)等,构建多目标鲁棒优化模型。
- 动态鲁棒优化:
将时间维度纳入鲁棒优化,考虑不确定性在不同时间步长的演化,构建动态鲁棒优化模型。
- 近似求解方法:
对于大规模问题,直接求解鲁棒优化模型可能计算量巨大,可以探索近似求解方法,例如基于场景的鲁棒优化、采用机器学习方法辅助不确定性预测和决策等。
4. 案例分析与结果讨论
为了验证本文提出的两阶段鲁棒规划方法的有效性,可以构建一个典型的数据中心微网场景进行仿真分析。通过与传统的确定性规划和单阶段鲁棒优化方法进行对比,评估本文方法的性能。
- 场景设置:
设置一定规模的光伏系统、储能系统、数据中心负荷以及与外部电网的连接。定义光伏出力、负荷和电价的不确定性范围。
- 对比方法:
- 确定性规划:
使用预测值进行优化,不考虑不确定性。
- 单阶段鲁棒优化:
将所有决策变量作为第一阶段决策,在不确定性集合的最坏情况下进行优化。
- 本文提出的两阶段鲁棒规划:
如本文所述,将设备容量作为第一阶段决策,运行调度作为第二阶段决策。
- 确定性规划:
- 评估指标:
总成本(投资成本+运行成本)、系统鲁棒性(在不同不确定性场景下的运行性能)、可再生能源消纳率、储能利用效率等。
预期结果:
- 鲁棒性:
本文提出的两阶段鲁棒规划方法应具有比确定性规划更好的鲁棒性,在不确定性实现时能够维持稳定运行,避免大规模失负荷或设备损坏。与单阶段鲁棒优化相比,由于考虑了运行中的调整能力,本文方法在应对不确定性时可能表现出更高的灵活性。
- 经济性:
本文方法在鲁棒性的前提下,应比单阶段鲁棒优化具有更好的经济性。这是因为通过利用第二阶段的调整能力,无需为了应对最坏情况而过度配置第一阶段的设备容量。
- 灵活性利用:
仿真结果应能体现出储能、可控负荷等灵活性资源在不同不确定性场景下被有效利用,以应对可再生能源波动、负荷变化和电价波动。
5. 结论
本文深入探讨了考虑灵活性的数据中心微网两阶段鲁棒规划方法。通过构建一个能够同时优化设备容量配置和运行调度的两阶段鲁棒优化模型,并将微网内部的灵活性资源(如储能、可控负荷)建模为第二阶段决策,本文提出的方法能够有效地应对不确定性,提高系统的鲁棒性,同时充分利用灵活性资源,降低总成本。通过案例分析与对比,验证了本文方法的有效性和优越性。未来的研究可以进一步完善模型,例如考虑更复杂的不确定性描述、纳入更多类型的灵活性资源、探索多目标优化以及研究更高效的求解算法,以更好地服务于绿色、高效数据中心微网的规划与运行。
⛳️ 运行结果
🔗 参考文献
[1] 马浩天,胡俊杰,童宇轩.考虑灵活性的数据中心微网两阶段鲁棒规划方法[J].中国电机工程学报, 2023, 43(19):7396-7408.DOI:10.13334/j.0258-8013.pcsee.221146.
[2] 于雷.含多类型能源的微网与外部电网协调运行机制和容量配置研究[D].华北电力大学(北京),2016.DOI:10.7666/d.Y3114218.
[3] 侯慧,甘铭,吴细秀,等.考虑移动氢能存储的港口多能微网两阶段分布鲁棒优化调度[J].中国电机工程学报, 2024, 44(8):3078-3092.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇