✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
干旱作为一种复杂的自然灾害,对农业、水资源、生态环境以及社会经济发展造成广泛而深远的影响。准确、及时地评估和监测干旱状况,是制定有效应对策略和减轻灾害损失的关键。标准化降水指数(SPI),由 McKee 等人在 1993 年提出,因其计算简便、适用范围广泛且对不同时间尺度下的干旱具有敏感性,已成为国际上普遍采用的干旱监测和评估工具之一。然而,传统的SPI计算方法依赖于对降水序列进行参数拟合,例如伽马分布或皮尔逊III型分布。这种方法假设降水数据服从特定的概率分布,并在拟合过程中需要估计相应的参数。当实际降水数据不严格符合预设的参数分布,或者样本量较小难以准确估计参数时,传统的SPI计算结果可能会产生偏差,从而影响干旱评估的准确性。为了克服传统SPI方法的局限性,非参数化方法被引入到SPI的计算中。本文旨在深入探讨基于非参数框架计算SPI的原理、优势、应用以及未来发展方向,重点强调该框架无需假设具有代表性的参数分布这一核心特点。
传统SPI的局限性与非参数框架的提出
传统的SPI计算流程通常包括以下步骤:首先,根据所选的时间尺度(例如1个月、3个月、6个月等),计算相应时间段内的累计降水量。其次,选择一个适当的概率分布模型(例如伽马分布),对累计降水量序列进行拟合,并估计其参数。再次,利用拟合好的概率分布模型,将累计降水量的原始值转换为其对应的累积概率。最后,通过标准正态分布的逆累积分布函数,将累积概率转换为标准正态变量,即SPI值。
这种参数拟合的方法存在以下挑战:
- 参数分布假设的局限性:
实际降水数据可能并不严格服从伽马分布或皮尔逊III型分布。尤其是在一些气候多变或数据量不足的区域,强制进行参数拟合可能导致拟合效果不佳,产生显著的误差。例如,在干旱半干旱地区,降水序列中可能存在较多的零值或极值,这使得经典的连续概率分布难以有效描述其分布特征。
- 参数估计的误差:
参数估计的准确性依赖于样本量的大小和数据的分布特性。样本量较小时,参数估计的误差可能较大,从而影响SPI计算结果的稳定性。
- 对分布类型选择的依赖性:
不同的参数分布模型可能导致不同的SPI计算结果。在实际应用中,选择合适的分布模型需要经验和一定的检验,这增加了计算的复杂性,也可能引入主观性。
为了规避这些问题,基于非参数框架计算SPI的方法应运而生。非参数方法的核心思想是直接利用数据的经验分布,而无需对数据的总体分布形式做出先验假设。这种方法更加灵活,对数据的分布特性没有严格的要求,尤其适用于那些分布未知或偏离经典参数分布的数据集。
基于非参数框架的SPI计算原理
基于非参数框架计算SPI的核心在于利用经验累积分布函数(ECDF)来代替参数模型的累积分布函数(CDF)。ECDF直接基于观测数据构建,反映了数据中各数值出现的频率。其计算步骤如下:
通过上述步骤,每个累计降水量观测值都被映射到一个相应的SPI值,该值反映了该观测值在历史同期序列中的相对位置,并且其分布近似于标准正态分布。
非参数SPI的优势
基于非参数框架计算SPI的方法具有以下显著优势:
- 无需参数分布假设:
这是非参数SPI最核心的优势。该方法不依赖于任何特定的参数分布假设,能够直接反映原始数据的分布特征,避免了因模型选择或拟合误差引入的不确定性。这使得非参数SPI在处理非正态或分布未知的数据时具有更高的鲁活性和准确性。
- 对数据分布的适应性强:
非参数方法直接利用数据的经验分布,因此对数据的分布形态没有严格的要求。无论是偏态分布、存在离群值,还是具有多峰特征的数据,非参数方法都能够有效地处理。
- 计算过程相对简单:
相比于需要进行参数拟合和检验的传统方法,非参数方法的计算过程相对直观和简单,只需对数据进行排序和计算累积概率。
- 适用于小样本数据:
在样本量较小的情况下,参数模型的拟合往往不够稳定,参数估计误差较大。非参数方法直接利用有限的数据来估计经验分布,在一定程度上能够更好地处理小样本问题,尽管样本量不足仍然会影响经验分布的精确性。
- 对零值的处理:
在干旱半干旱地区,降水序列中常常存在大量的零值。传统的参数方法在处理零值时需要采用特殊的处理方式(例如使用修正的伽马分布)。非参数方法能够自然地处理零值,将其包含在数据的排序和累积概率计算中。
非参数SPI的应用领域
非参数SPI作为一种改进的干旱监测工具,具有广阔的应用前景,特别是在以下领域:
- 区域干旱监测与评估:
非参数SPI可以应用于不同区域的干旱监测,尤其是在那些降水数据分布复杂的地区。通过计算不同时间尺度的非参数SPI,可以有效地识别和评估干旱的发生、发展和解除过程。
- 干旱风险评估:
基于非参数SPI的历史序列,可以分析干旱发生的频率、强度和持续时间,从而进行干旱风险评估和区划。
- 气候变化研究:
非参数SPI可以用于分析气候变化对区域干旱的影响,例如研究干旱频率和强度的变化趋势。
- 水资源管理:
非参数SPI可以为水资源规划和管理提供重要信息,例如评估水库蓄水情况、预测干旱对农业用水的影响。
- 生态系统研究:
干旱对生态系统具有重要影响,非参数SPI可以用于研究干旱对植被生长、土壤水分、生物多样性等方面的影响。
- 农业气象服务:
非参数SPI可以为农业生产提供重要的气象服务,例如指导农作物的种植结构、灌溉时机等。
非参数SPI的潜在挑战与未来发展方向
尽管非参数SPI具有显著优势,但仍然存在一些潜在的挑战和需要进一步研究的方向:
- 经验分布的平滑性:
直接基于有限样本构建的ECDF可能不够平滑,尤其是在样本量较小的情况下。这种非平滑性可能会导致SPI值的波动性增加。未来研究可以探索采用一些平滑技术(例如核密度估计)来改进ECDF的估计,从而获得更平滑的SPI序列。
- 不同时间尺度的计算效率:
对于长期的降水序列,计算不同时间尺度的SPI需要大量的排序操作,计算效率可能成为一个问题。未来可以研究优化算法,提高非参数SPI的计算效率。
- 多变量干旱指数:
尽管SPI是基于降水构建的干旱指数,但实际干旱是多种因素综合作用的结果,例如气温、蒸发蒸腾等。未来的研究可以探索将非参数方法应用于多变量干旱指数的构建,以更全面地评估干旱状况。
- 极端降水的处理:
极端降水事件对干旱指数的计算可能产生影响。未来可以研究如何在非参数框架下更好地处理极端降水,以提高干旱指数的稳健性。
- 与其他干旱指数的比较研究:
需要进一步进行系统的比较研究,评估非参数SPI与传统SPI以及其他干旱指数在不同气候区域和时间尺度下的表现,从而更好地理解其优缺点和适用范围。
- 标准化与可比性:
虽然非参数SPI的计算原理是基于经验分布,但为了保证不同区域和不同时间序列之间的可比性,仍然需要对其进行标准化处理,通常是将其转换为标准正态分布。未来可以进一步研究非参数方法在不同数据集之间的标准化问题。
结论
基于非参数框架计算标准化降水指数(SPI)提供了一种无需假设具有代表性参数分布的干旱监测新视角。该方法直接利用观测数据的经验分布,避免了传统参数拟合的局限性,具有无需参数假设、对数据分布适应性强、计算过程相对简单等显著优势。非参数SPI在区域干旱监测与评估、干旱风险评估、气候变化研究、水资源管理等领域具有广阔的应用前景。尽管仍然存在一些潜在的挑战,但随着研究的深入和计算技术的进步,非参数SPI有望成为未来干旱监测和评估的重要工具,为减轻干旱灾害损失提供更准确、更可靠的信息支持。通过不断完善和发展非参数SPI方法,我们将能够更好地理解和应对日益严峻的全球干旱问题。
⛳️ 运行结果
🔗 参考文献
[1] 袁伟韬.基于 SPI 指数的贵州省气象干旱时空演变分析[J].工程技术研究, 2021, 2(12):97-101.DOI:10.36012/etr.v2i12.3059.
[2] 张迎.基于新型综合干旱指数的干旱演变及驱动力研究[D].西安理工大学,2019.
[3] 段莹,廖留峰,田鹏举.基于Copula函数和SPI的贵州省干旱重现期研究[C]//贵州省气象学会2019年学术年会.贵州省气象学会, 2019.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇