标准 Hough 变换、修正 Hough 变换和序列 Hough 变换三种典型航迹起始算法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在目标跟踪系统中,航迹起始是准确跟踪目标的首要步骤,它通过对传感器获取的离散点迹数据进行处理,确定目标的初始航迹。标准 Hough 变换、修正 Hough 变换和序列 Hough 变换作为三种典型的航迹起始算法,在不同场景下发挥着重要作用。深入研究这三种算法,有助于理解它们的优势与局限,为实际应用中选择合适的航迹起始方法提供依据,从而提升目标跟踪系统的性能。

二、算法原理

(一)标准 Hough 变换

图片

(二)修正 Hough 变换

修正 Hough 变换是在标准 Hough 变换基础上的改进。考虑到标准 Hough 变换在处理实际航迹起始问题时存在的局限性,如计算量大、对噪声敏感等,修正 Hough 变换对算法流程和参数处理进行优化。它可能通过引入先验信息,如目标的运动范围、速度限制等,缩小参数空间的搜索范围,减少计算量;或者改进投票机制,对不同置信度的点迹赋予不同的投票权重,降低噪声点对结果的影响,从而更准确地起始目标航迹。

(三)序列 Hough 变换

序列 Hough 变换基于时间序列的思想,它不是一次性对所有点迹数据进行处理,而是按照时间顺序逐段处理数据。在每一个时间片段内,利用 Hough 变换进行航迹起始的初步判断,然后结合前后时间片段的结果,通过数据关联和轨迹延续等方法,逐步确定最终的目标航迹。这种方法能够更好地适应目标运动的动态变化,在处理目标出现、消失或机动等情况时具有更好的鲁棒性。

三、算法性能对比

(一)计算复杂度

标准 Hough 变换需要对所有点迹数据在整个参数空间进行计算和投票,计算复杂度较高,尤其是在点迹数量较多或参数空间范围较大时,计算量会急剧增加。修正 Hough 变换通过优化参数空间搜索和投票机制,一定程度上降低了计算复杂度,但仍需要对部分参数空间进行遍历计算。序列 Hough 变换由于是逐段处理数据,虽然在每个时间片段内的计算复杂度与 Hough 变换相关,但总体上通过分阶段处理,在一些情况下能够有效减少计算量,特别是在处理长时间序列数据时优势明显。

(二)抗干扰能力

标准 Hough 变换对噪声点和虚假点迹较为敏感,因为它平等对待所有点迹进行投票,噪声点可能会在参数空间中形成干扰峰值,导致错误的航迹起始。修正 Hough 变换通过引入权重机制和利用先验信息,能够增强对噪声和虚假点迹的抑制能力,提高航迹起始的准确性。序列 Hough 变换通过结合时间序列信息,利用目标运动的连续性,能够更好地识别和剔除噪声点和虚假点迹,在复杂环境下,如存在大量杂波和干扰的场景中,抗干扰能力表现突出。

(三)航迹起始准确性

在理想情况下,标准 Hough 变换能够准确检测到目标航迹,但在实际应用中,由于噪声和数据不确定性的影响,其准确性会受到限制。修正 Hough 变换通过改进算法,在大多数情况下能够提高航迹起始的准确性,特别是在已知目标运动特性等先验信息的场景中。序列 Hough 变换利用时间序列的连续性和数据关联,在处理目标机动和复杂运动时,能够更准确地起始航迹,对于快速变化的目标状态具有更好的适应性。

四、实际应用场景分析

(一)标准 Hough 变换应用场景

标准 Hough 变换适用于对实时性要求不高,目标运动较为简单,且点迹数据量较少、噪声水平较低的场景。例如在一些室内小型目标跟踪系统中,目标运动规律相对稳定,干扰较少,标准 Hough 变换能够以较低的计算成本实现航迹起始。

(二)修正 Hough 变换应用场景

修正 Hough 变换适用于对航迹起始准确性有较高要求,且能够获取一定目标先验信息的场景。如在军事目标跟踪中,已知目标的大致运动范围和速度限制等信息,修正 Hough 变换可以利用这些先验知识,快速准确地起始目标航迹,同时有效抑制环境噪声和敌方干扰带来的虚假点迹影响。

(三)序列 Hough 变换应用场景

序列 Hough 变换在处理长时间序列数据、目标频繁机动或存在目标出现和消失等复杂情况的场景中具有优势。例如在海上目标跟踪中,目标可能会受到海杂波干扰,且运动状态多变,序列 Hough 变换能够通过逐段分析和时间关联,准确起始和维护目标航迹,适应复杂的海洋环境。

五、结论与展望

本研究对标准 Hough 变换、修正 Hough 变换和序列 Hough 变换三种航迹起始算法进行了全面分析,对比了它们在计算复杂度、抗干扰能力和航迹起始准确性等方面的性能,并探讨了各自的适用场景。三种算法各有优劣,在实际应用中需根据具体的系统需求、数据特点和应用场景选择合适的算法。

未来,随着传感器技术的发展和目标跟踪场景的日益复杂,对航迹起始算法的要求也会不断提高。后续研究可进一步融合多种算法的优势,结合深度学习、人工智能等技术,提高航迹起始算法的性能。例如,利用深度学习模型提取目标特征,辅助 Hough 变换进行更准确的航迹起始;或者研究自适应的 Hough 变换算法,根据数据特点动态调整算法参数,以适应不同的应用场景。同时,加强对算法在实际复杂环境中的测试和验证,推动航迹起始算法在更多领域的应用和发展。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 王国宏,苏峰,毛士艺,等.杂波环境下基于Hough变换和逻辑的快速航迹起始算法[J].系统仿真学报, 2002, 14(7):3.DOI:10.3969/j.issn.1004-731X.2002.07.012.

[2] 邢凤勇,熊伟,王海鹏.基于聚类和Hough变换的多编队航迹起始算法[J].海军航空工程学院学报, 2010, 25(6):5.DOI:10.3969/j.issn.1673-1522.2010.06.006.

[3] 鹿传国,冯新喜,孔云波,等.基于形态学和Hough变换的航迹起始研究[J].兵工学报, 2013.DOI:CNKI:SUN:BIGO.0.2013-06-008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值