✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
光谱分析是一种通过研究物质与电磁辐射相互作用产生的光谱来获取物质成分、结构和物理化学性质等信息的分析方法。它在化学、生物、材料科学、环境监测等众多领域都有着广泛的应用。
在光谱分析中,物质吸收、发射或散射特定波长的光,形成独特的光谱特征。通过对这些光谱特征的解析,可以确定物质中所含的元素、分子结构以及它们的浓度等关键信息。而 Matlab 作为一款功能强大的数值计算和数据可视化软件,凭借其丰富的函数库和便捷的编程环境,为光谱分析提供了高效的实现工具。
二、Matlab 中光谱分析常用函数与工具


三、Matlab 实现光谱分析的步骤
3.1 数据准备
首先,需要获取光谱数据。光谱数据可以来自光谱仪测量得到的文本文件、Excel 表格等。使用 Matlab 的文件读取函数将数据导入到工作空间中,得到一个包含波长和对应光谱强度的矩阵或向量。例如,使用data = importdata('spectral_data.txt')读取文本格式的光谱数据,其中data的第一列可能为波长,其余列为不同样本的光谱强度。
三、Matlab 实现光谱分析的步骤
3.1 数据准备
首先,需要获取光谱数据。光谱数据可以来自光谱仪测量得到的文本文件、Excel 表格等。使用 Matlab 的文件读取函数将数据导入到工作空间中,得到一个包含波长和对应光谱强度的矩阵或向量。例如,使用data = importdata('spectral_data.txt')读取文本格式的光谱数据,其中data的第一列可能为波长,其余列为不同样本的光谱强度。
3.2 数据预处理
根据光谱数据的质量和分析需求,选择合适的预处理方法。如果光谱中存在明显的噪声,可以使用smooth函数进行平滑处理,如smoothed_data = smooth(spectral_data, 5),其中5为平滑窗口的大小。若存在基线漂移,可采用detrend函数去除线性趋势,detrended_data = detrend(spectral_data)。对于需要进行比较或建模的光谱数据,还可以进行归一化处理,如normalized_data = normc(spectral_data)。
3.3 光谱特征提取与分析
- 定性分析:利用plot函数绘制预处理后的光谱曲线,观察光谱的峰值、谷值以及特征峰的位置,这些特征是物质定性分析的重要依据。例如,plot(wavelength, normalized_data)可以绘制出波长与归一化光谱强度的关系曲线,通过对比不同物质的光谱曲线,识别出它们的特征差异。
- 定量分析:当需要建立光谱数据与物质浓度之间的关系时,可以采用偏最小二乘回归等方法。首先将光谱数据和对应的浓度值分为训练集和测试集,使用plsregress函数在训练集上建立模型,[XL, YL, XS, YS, beta, PLSstats] = plsregress(X_train, y_train, ncomp),其中X_train为训练集的光谱数据,y_train为对应的浓度值,ncomp为选取的主成分数。然后使用建立的模型对测试集进行预测,y_pred = [ones(size(X_test, 1), 1) X_test] * beta,并通过计算预测值与真实值之间的误差(如均方根误差)来评估模型的性能。
- 降维分析:对于高维的光谱数据,可以使用主成分分析进行降维。[coeff, score, latent, tsquared, explained, mu] = pca(spectral_data),其中coeff为主成分载荷,score为主成分得分,explained为各主成分解释的方差比例。通过分析主成分得分和载荷,可以提取出光谱数据中的主要信息,简化数据分析过程。
3.4 结果可视化与解释
将分析得到的结果以图形的形式展示出来,如绘制主成分得分图、预测值与真实值的对比图等,以便更直观地理解和解释分析结果。例如,使用scatter(score(:,1), score(:,2))绘制前两个主成分的得分散点图,观察不同样本在主成分空间中的分布情况,判断样本之间的相似性和差异性。
四、实例演示
假设我们有一组不同浓度的溶液的近红外光谱数据,需要通过 Matlab 实现对其进行定量分析,建立光谱数据与溶液浓度之间的模型。
- 数据导入:使用data = xlsread('solution_spectra.xlsx')读取 Excel 文件中的数据,其中第一列是波长(400-1000nm),第 2-11 列是 10 个不同浓度溶液的光谱强度,第 12 列是对应的溶液浓度。
- 数据预处理:对光谱数据进行平滑和归一化处理,smoothed_data = smooth(data(:,2:11), 10),normalized_data = normc(smoothed_data)。
- 划分数据集:将前 7 个样本作为训练集,后 3 个样本作为测试集,X_train = normalized_data(1:7,:),y_train = data(1:7,12),X_test = normalized_data(8:10,:),y_test = data(8:10,12)。
- 建立 PLS 模型:选择 3 个主成分建立模型,[XL, YL, XS, YS, beta, PLSstats] = plsregress(X_train', y_train, 3)。
- 模型预测:对测试集进行预测,y_pred = [ones(size(X_test,1),1) X_test'] * beta。
- 结果可视化:绘制预测值与真实值的对比图,plot(y_test, 'bo', y_pred, 'r*'),并添加图例和坐标轴标签。通过观察图形和计算误差,可以评估模型的预测效果。
五、总结
Matlab 为光谱分析提供了强大的功能支持,从数据读取、预处理到特征提取、建模分析以及结果可视化,都可以通过其丰富的函数和工具便捷地实现。在实际应用中,需要根据具体的光谱数据特点和分析目标,选择合适的方法和函数,以获得准确、可靠的分析结果。随着光谱分析技术的不断发展,Matlab 在该领域的应用也将更加广泛和深入。
⛳️ 运行结果



🔗 参考文献
[1] 周丹,王钦军,田庆久,等.小波分析及其在高光谱噪声去除中的应用[J].光谱学与光谱分析, 2009(7):5.DOI:10.3964/j.issn.1000-0593(2009)07-1941-05.
[2] 刘燕德,应义斌.基于MATLAB语言的苹果糖度近红外光谱定量分析[J].浙江大学学报:工学版, 2004, 38(10):4.DOI:10.3785/j.issn.1008-973X.2004.10.026.
[3] 王忆锋,毛京湘,WANGYi-feng,等.用MATLAB和样条函数拟合红外探测器相对光谱响应曲线[J].光电技术应用, 2008, 23(2):4.DOI:10.3969/j.issn.1673-1255.2008.02.011.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
869

被折叠的 条评论
为什么被折叠?



