在 Windows 上安装 DeepSeek 的完整指南

在 Windows 上安装 DeepSeek 的完整指南

  • DeepSeek 无需互联网连接即可在本地运行。
  • Ollama 和 LM Studio 是安装和使用该模型的关键。
  • 8B 版本非常适合具有基本资源的计算机。
  • LM Studio 提供图形界面,方便使用。

DeepSeek 它已成为其中之一 人工智能 最受关注的是它能够在本地运行且不需要互联网连接。在本文 中,我们将教你如何在 Windows 计算机上安装此 AI,以及如何使用以下工具充分利用它: 奥拉马 y LM 工作室,选项因其多功能性和易用性而受到关注。在这里,您可以找到所有必要的步骤的详细信息,避 免复杂的技术问题并促进 安装

该过程也适用于其他操作系统,例如 macos o GNU / Linux的,但我们将重点介绍在 Windows 上的安 装。在本地电脑上运行 DeepSeek 有很多好处,比如可以更好地控制你的 数据 可以随时离线使用AI。让 我们一步一步地看一下。

步骤 1:下载并安装 Ollama

Ollama 是让 DeepSeek 在您的计算机上运行的重要工具。该软件可以让你在本地以可访问的方式运行AI 模型。请按以下步骤操作: 1. 加入官方页面 奥拉马 (ollama.com)。 2. 下载与您的操作系统兼容的程序版本。对于 Windows 来说,这是一个可执行文件 (.exe)。 3. 双击下载的文件开始安装过程。 4. 按照屏幕上的说明进行操作。您只需点击 “安装” 等待几分钟直到安装完成。

步骤 2:下载 DeepSeek RXNUMX 模型

Ollama 启动运行后ÿ

### DeepSeek PC端部署教程和指南 #### 选择合适的模型DeepSeek 提供了多种参数规模的模型,从1.5B到70B不等。对于不同配置的计算机,可以选择适合自己的模型本来确保最佳性能[^3]。 #### 准备环境 为了顺利安装并运行DeepSeek,在PC上需先准备好相应的开发环境。通常建议使用Anaconda管理Python包以及虚拟环境,这有助于简化依赖项管理和隔离项目所需的库文件。 ```bash # 创建一个新的Conda环境 conda create -n deepseek_env python=3.8 # 激活该环境 conda activate deepseek_env ``` #### 安装必要的软件包 根据官方文档指示,安装所有必需的Python库和其他工具。这些可能包括PyTorch、Transformers以及其他辅助性的数据处理或优化库。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install transformers datasets evaluate accelerate ``` #### 下载预训练模型权重 访问指定链接下载所选大小的DeepSeek预训练模型权重,并将其放置于适当位置以便后续加载。 #### 加载与初始化模型实例 编写一段简单的脚本来完成模型对象创建及其基本设置工作。这里展示了一个基础的例子: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path_to_downloaded_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) input_text = "你好啊,今天过得怎么样?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` 通过上述步骤可以实现DeepSeek在个人电脑上的初步部署。当然实际应用中还需要考虑更多细节问题如GPU加速支持、多线程调优等以获得更好的用户体验。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值