Thomas-Calculus——Infinite Sequences and Series-The integral test(托马斯-微积分——无穷数列和级数-积分测试)

介绍

关于级数,我们最关心的就是它是否收敛,在之前的文章中已经介绍了一种判断级数敛散性的方法——通过判断部分和(partial sum)的敛散性来得出级数是否收敛,如果我们不能写出部分和的通项公式,则通过nth-term test判断级数的敛散性。

调和级数(harmonic series)

调和级数(harmonic series)是P级数(P-series)的一种,形如下图:

调和级数中a_{n} = \frac{1}{n},根据nth-term test是无法判断调和级数的敛散性的。

根据定理6的推论,调和级数是发散的。 

积分测试

这个类似于调和级数的级数收敛吗?

我们通过与\int_{1}^{\propto }\left ( \frac{1}{x^{2}} \right )dx比较来确定上面级数的敛散性,为了进行比较,我们将上面级数的项看作函数f(x) = \frac{1}{x^{2}}的值,然后把函数值作为矩形的右顶点,底部x轴宽度看作是1,所以矩形的面积还是函数值,也是级数各项的值。

因此,\sum_{n = 1}^{\propto }(\frac{1}{n^{2}})的部分和被2限制,所以,该级数是收敛的。

积分测试的定义

 

定义的翻译比较拗口,简单地讲,积分测试的定义有这样几个前提条件(premise):1、数列{a_{n}}各项都是正数。2、a_{n} = f(n)。3、函数f(x)对于所有x \geq N(N是一个正数)连续、大于零并且递减。满足这些条件,则级数 \sum_{n = N}^{\propto } a_{n} 和积分 \int_{N}^{\propto } f(x) dx 都是收敛或发散。

证明:假设条件中的N = 1(对一般的N的证明也是相似的),函数f(x)是递减的并且对所有的n,a_{n} = f(n),使函数值等于数列值构成的矩阵的左上顶点对应的值:( n, f(n) )。

由图(a)可知,使函数值等于数列值构成的矩阵的右上顶点对应的值,a_{n}的前n项部分和(矩形面积的和)大于 \int_{1}^{n+1} f(x) dx,所以a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+···+a_{n}>=\int_{1}^{n+1} f(x) dx。

由图(b)可知,a_{n}的前n项部分和(矩形面积的和)小于\int_{1}^{n} f(x) dx,所以a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+···+a_{n}<=\int_{1}^{n} f(x) dx。

所以,结合上面两张图得出的不等式可知,\int_{1}^{n+1} f(x) dx <= a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+··​​​​​​​·+a_{n} <= \int_{1}^{n} f(x) dx。当n\rightarrow\propto时,\int_{1}^{n+1} f(x) dx和 \int_{1}^{n} f(x) dx都会变成\int_{1}^{\propto } f(x) dx,所以,如果\int_{1}^{\propto } f(x) dx是有界的,那么\sum a{_{n}}^{}也是有界的,反之亦然。

所以,积分测试可以作为一种判断级数敛散性的方法,但是对级数和对应的函数都有要求。积分测试还需要用到反常积分的知识。需要注意的是,通过积分测试得出的结果只是用来判断级数的敛散性,不能直接等于级数的结果。

P-级数

P-级数形如\sum_{n=1}^{\propto }\frac{1}{n^{p}},其中p是实数。当p>1时,\sum_{n=1}^{\propto }\frac{1}{n^{p}}收敛,当p<1时,\sum_{n=1}^{\propto }\frac{1}{n^{p}}发散。

证明(运用积分测试):

在P-级数中,当P=1时,就是调和级数,所以调和级数是P-级数的一种特殊情况。

误差估计

在上面提到的积分测试中,无论是使函数值等于数列值构成的矩阵的左上顶点对应的值,还是使函数值等于数列值构成的矩阵的右上顶点对应的值,都不能完全等于级数的值,这就会造成误差。

假设\suma_{n}各项为正数并且根据积分测试级数是收敛的。令差数R_{n} = S-s_{n},其中S是级数的值,s_{n}是级数的部分和的值,所以R_{n}=a_{n+1}+a_{n+2}+a_{n+3}+a_{n+4}+a_{n+5}·​​​​​​​·​​​​​​​·。

根据图(a),函数值等于数列值构成的矩阵的左上顶点对应的值,所以R_{n}>=\int_{n+1}^{\propto } f(x) dx

根据图(b),函数值等于数列值构成的矩阵的左上顶点对应的值,所以R_{n}<=\int_{n}^{\propto } f(x) dx

所以,根据上面的两个不等式,可以得出\int_{n+1}^{\propto } f(x) dx<=R_{n}<=\int_{n}^{\propto } f(x) dx。

因为R_{n} = S-s_{n},所以,s_{n}+\int_{n+1}^{\propto } f(x) dx<=S<=s_{n}+\int_{n}^{\propto } f(x) dx。

在对级数应用积分测试求其敛散性的时候,可以通过上述不等式组求出级数的大致范围。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不爱敲代码的数学分子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值