D题链接
D题:
很容易贪心的想到alice一定是取所存不同数字里的最小值,bob就是想办法尽量多拿掉alice之后数字。这样问题就转化成有n种物品,每个物品有a【i】个,bob每次取空一个物品,或者不取,最后可以取得的最多物品数。这就可以看出来是背包问题,我们令dp【i】【j】表示前i个物品bob取j个物品的最小操作数。
我们枚举每个物品,表示bob现在要清空这个物品。我们考虑bob什么情况下才可以在alice拿到第i个物品前拿完第i个物品。我们假设bob之前拿了j-1个物品,合法的情况下他已经花了dp【i-1】【j-1】个次数。因为bob每花一次次数,alice就会拿一个物品,bob用了dp【i-1】【j-1】次次数,那么alice就已经拿了dp【i-1】【j-1】个物品,且bob拿了j-1个物品,所以在bob开始取第i个物品之前(且先手是alice,alice还没取),alice和bob总的取的物品已经有dp【i-1】【j-1】+j-1个了(我们假设alice取一次,bob取一次,bob取第dp【i-1】【j-1】次的时候,其实alice已经取完属于她的第dp【i-1】【j-1】个物品了,当bob取完第dp【i-1】【j-1】次操作后,下次是alice先手,这时候alice取的是属于她的第【i-1】【j-1】+1个物品,而bob取了j-1个物品)。
在第dp【i-1】【j-1】+j-1+1个物品到第i个物品之间有i-(dp【i-1】【j-1】+j-1+1)(不能+1,因为alice不能取到第i个物品)个物品可以让alice取,也就是说留给bob取第i个物品的次数只有i-(dp【i-1】【j-1】+j-1+1)次,如果a【i】>i-(dp【i-1】【j-1】+j-1+1)bob就无法取走第i个物品,也就是说dp不能从j-1转移到j,将式子简化一下就是i-j<dp【i-1】【j-1】+a【i】时无法转移,那么合法的转移条件就是i-j>=dp【i-1】【j-1】+a【i】。
那么转移方程就是dp【i】【j】=dp【i-1】【j-1】+a【i】表示从i物品之前已经取了j-1个物品的最小操作数加上取第i个物品的操作。因为这个转移方程是有条件的,所以我们每次都假设不选当前物品,dp【i】【j】=dp【i-1】【j】。注意,这里一定要保证所有dp状态和dp值都要合法的,不然直接转移会出问题。比如1 2 3 4 4,bob最大操作数只能删掉2或者3,但如果dp转移不合法的话,dp【3】【2】会更新成2,但实际上dp【3】【2】应该是inf的,因为它并不能转移到(bob不能在第3个物品前取完2个物品),然后dp【3】【2】=2又会影响到dp【4】【2】,因为dp【i】【j】可以直接从dp【i-1】【j】转移,这样dp【4】【2】=2,而这时候2又小于等于4-2(i-j),反而把dp【3】【2】变合法了,这是因为直接转移的话相当于给前面一个状态的bob又加了一次操作数,但是实际上前面的状态是没有这个操作数的。
所以我们在状态转移的时候先保证每个合法状态的转移,只有满足了转移条件才能让该状态从前面状态转移。
注释的两行就是上述的错误转移方程。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int long long
typedef unsigned long long ull;
typedef pair<ll,ll> pii;
const int inf=0x3f3f3f3f;
const int N=2e5+10;
const int mod=1e9+7;
const ll INF=2e9+10;
mt19937_64 rd(23333);
uniform_real_distribution<double> drd(0.000001,0.99999);
void solve(){
vector<int> a;
int n;cin>>n;
map<int,int> cnt;
while(n--){
int x;
cin>>x;
cnt[x]++;
}
for(auto const &[k,v]:cnt){
a.push_back(v);//选出不同且单调上升的数
}
n=a.size();
vector<vector<int> > dp(n+1,vector<int>(n+1,inf));
int maxx=0;
for(int i=0;i<=n;i++)
dp[i][0]=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
//dp[i][j]=min(dp[i-1][j],dp[i-1][j-1]+a[i-1]);//dp【i-1】【j-1】+a【i-1】可能不合法,不能直接转移
dp[i][j]=dp[i-1][j];
if(dp[i-1][j-1]+a[i-1]<=i-j){
//if(dp[i][j]<=i-j){//和上述错误转移一样
dp[i][j]=min(dp[i][j],dp[i-1][j-1]+a[i-1]);
maxx=max(maxx,j);
}
}
}
cout<<n-maxx<<endl;
}
signed main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t=1;
cin>>t;
while(t--){
solve();
}
return 0;
}
C题:
设dp【i】【j】为前i个数操作j次的最小和。可以发现从dp【i-1】【j-1】转移的话并不能确定a【i-1】是否是dp【i-1】【j-1】中操作数之一,也就是说a【i-1】的状态我们并不能确定,所以不能直接转移。但我们发现k很小,也就是说第i个位置需要判断的前面几个数是否发生变化的数量很少,我们可以直接暴力把这些位置的所有状态都转移。也就是说dp【i】【j】我们可以考虑j里面有几次是会影响到i-1这个位置,也就是从i-1往前多少个连续数我们都采用了操作,这样最多只要判断d次,容易知道当我们操作了连续d次,那么这些数都可以变成这d个数里的最小数,所以我们直接记录d区间最小数,然后mi*(d+1)(因为是从i+d位置从前操作d次,d次可以取d+1个数的min)就是这几个数的贡献,也就是他们的和,然后再加上d区间前面的选操作j的dp值即可(dp【i-1】【j】),因为我们是不考虑第i位变化的,所以我们要从dp【i-1】转移,这样i的值就不变了。
由于我们要记录d区间的最小值,我们可以枚举到i的时候然后慢慢增加d,然后每次与a【i+d】取min就是这d区间最小值了,可以避免重复计算。我们从i计算i+d区间的min时,算的是dp【i+d】的值,因为dp状态是从i+d往前连续操作d次,注意,因为我们枚举的连续区间,也就是说区间左端点是不会再被它之前的位置影响,也就是说从i位置往后枚举,a【i】就是a【i】,不会被a【i-1】影响,所以我们要从dp【i-1】转移,从dp【i】转移的话a【i】的值不确定 。
其实就是枚举所有a【i-1】的情况,枚举所有转移状态,然后暴力转移。
最后dp【n】【k】即是答案。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int long long
typedef unsigned long long ull;
typedef pair<ll,ll> pii;
const int inf=0x3f3f3f3f;
const int N=2e5+10;
const int mod=1e9+7;
const ll INF=2e9+10;
mt19937_64 rd(23333);
uniform_real_distribution<double> drd(0.000001,0.99999);
int n,k;
void solve(){
cin>>n>>k;
int maxx=0;
vector<int> a(n+2);
for(int i=1;i<=n;i++)
cin>>a[i];
vector<vector<int> > dp(n+1,vector<int>(k+1,1e18));
for(int i=0;i<=k;i++)
dp[0][i]=0;
for(int i=1;i<=n;i++){
for(int j=0;j<=k;j++){//j表示枚举的i-1前(没有i)的操作数
int mi=inf;
for(int d=0;d+j<=k&&i+d<=n;d++){//d表示往后的操作数
mi=min(mi,a[i+d]);//往前j,往后只有k-j,j+d就是总
dp[i+d][j+d]=min(dp[i+d][j+d],dp[i-1][j]+(d+1)*mi);
}
}
}
cout<<dp[n][k]<<endl;
//cout<<*min_element(dp[n].begin(),dp[n].end())<<endl;
}
signed main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int t=1;
cin>>t;
while(t--){
solve();
}
return 0;
}